分解趋势,季节和剩余时间序列元素

abu*_*nte 14 python machine-learning time-series pandas statsmodels

我有DataFrame几个时间序列:

         divida    movav12       var  varmovav12
Date                                            
2004-01       0        NaN       NaN         NaN
2004-02       0        NaN       NaN         NaN
2004-03       0        NaN       NaN         NaN
2004-04      34        NaN       inf         NaN
2004-05      30        NaN -0.117647         NaN
2004-06      44        NaN  0.466667         NaN
2004-07      35        NaN -0.204545         NaN
2004-08      31        NaN -0.114286         NaN
2004-09      30        NaN -0.032258         NaN
2004-10      24        NaN -0.200000         NaN
2004-11      41        NaN  0.708333         NaN
2004-12      29  24.833333 -0.292683         NaN
2005-01      31  27.416667  0.068966    0.104027
2005-02      28  29.750000 -0.096774    0.085106
2005-03      27  32.000000 -0.035714    0.075630
2005-04      30  31.666667  0.111111   -0.010417
2005-05      31  31.750000  0.033333    0.002632
2005-06      39  31.333333  0.258065   -0.013123
2005-07      36  31.416667 -0.076923    0.002660
Run Code Online (Sandbox Code Playgroud)

我想以divida一种我可以将其趋势与其季节性和残余成分分开的方式来分解第一个时间序列.

我在这里找到了答案,并尝试使用以下代码:

import statsmodels.api as sm

s=sm.tsa.seasonal_decompose(divida.divida)
Run Code Online (Sandbox Code Playgroud)

但是我一直收到这个错误:

Traceback (most recent call last):
File "/Users/Pred_UnBR_Mod2.py", line 78, in <module> s=sm.tsa.seasonal_decompose(divida.divida)
File "/Library/Python/2.7/site-packages/statsmodels/tsa/seasonal.py", line 58, in seasonal_decompose _pandas_wrapper, pfreq = _maybe_get_pandas_wrapper_freq(x)
File "/Library/Python/2.7/site-packages/statsmodels/tsa/filters/_utils.py", line 46, in _maybe_get_pandas_wrapper_freq
freq = index.inferred_freq
AttributeError: 'Index' object has no attribute 'inferred_freq'
Run Code Online (Sandbox Code Playgroud)

有人可以发光吗?

Ste*_*fan 28

当您转换您的正常工作indexDateTimeIndex:

df.reset_index(inplace=True)
df['Date'] = pd.to_datetime(df['Date'])
df = df.set_index('Date')
s=sm.tsa.seasonal_decompose(df.divida)

<statsmodels.tsa.seasonal.DecomposeResult object at 0x110ec3710>
Run Code Online (Sandbox Code Playgroud)

通过以下方式访问组件

s.resid
s.seasonal
s.trend
Run Code Online (Sandbox Code Playgroud)

  • 简单的问题:我如何访问该结果?我只在 0x110ec3710 处获取 &lt;statsmodels.tsa.seasonal.DecomposeResult 对象&gt; (2认同)