gib*_*z00 8 r zoo dplyr data.table
我有一个大型数据帧(3M +行).我试图计算某个ActivityType在21天窗口中出现的次数.我已经用R中的另一个变量的Rolling Sum建模了我的解决方案.但是只需要一个ActivityType就需要很长时间.我认为3M +行不会占用过多的时间.以下是我的尝试:
dt <- read.table(text='
Name ActivityType ActivityDate
John Email 1/1/2014
John Email 1/3/2014
John Webinar 1/5/2014
John Webinar 1/20/2014
John Webinar 3/25/2014
John Email 4/1/2014
John Email 4/20/2014
Tom Email 1/1/2014
Tom Webinar 1/5/2014
Tom Webinar 1/20/2014
Tom Webinar 3/25/2014
Tom Email 4/1/2014
Tom Email 4/20/2014
', header=T, row.names = NULL)
library(data.table)
library(reshape2)
dt$ActivityType <- factor(dt$ActivityType)
dt$ActivityDate <- as.Date(dt$ActivityDate, "%m/%d/%Y")
dt <- dt[order(dt$Name, dt$ActivityDate),]
dt <- dcast(dt, Name + ActivityDate ~ ActivityType, fun.aggregate=length)
setDT(dt)
#Build reference table
Ref <- dt[,list(Compare_Value=list(I(Email)),Compare_Date=list(I(ActivityDate))), by=c("Name")]
#Use mapply to get last 21 days of value by Name
dt[,Email_RollingSum := mapply(ActivityDate=ActivityDate,Name=Name, function(ActivityDate, Name) {
d <- as.numeric(Ref$Compare_Date[[Name]] - ActivityDate)
sum((d <= 0 & d >= -21)*Ref$Compare_Value[[Name]])})]
Run Code Online (Sandbox Code Playgroud)
这仅适用于ActivityType = Email,然后我必须对其他ActivityType级别执行相同操作.我得到解决方案的链接谈到使用"mcapply"而不是"mapply".请告诉我如何使用mcapply或任何其他可以加快速度的解决方案.
以下是预期产量.对于每一行,我在此之前21天采用ActivityDate,而21天是我的时间窗口.我一直计算ActivityType ="Email"出现在该时间窗口中.
Name ActivityType ActivityDate Email_RollingSum
John Email 1/1/2014 1
John Email 1/3/2014 2
John Webinar 1/5/2014 2
John Webinar 1/20/2014 2
John Webinar 3/25/2014 0
John Email 4/1/2014 1
John Email 4/20/2014 2
Tom Email 1/1/2014 1
Tom Webinar 1/5/2014 1
Tom Webinar 1/20/2014 1
Tom Webinar 3/25/2014 0
Tom Email 4/1/2014 1
Tom Email 4/20/2014 2
Run Code Online (Sandbox Code Playgroud)
setDT(dt)
dt[, ActivityDate := as.Date(ActivityDate, '%m/%d/%Y')]
# add index to keep track of rows
dt[, idx := .I]
# match the dates we're looking for using a rolling join and extract the row numbers
rr = dt[.(Name = Name, ActivityDate = ActivityDate - 21, refIdx = idx),
.(idx, refIdx), on = c('Name', 'ActivityDate'), roll = -Inf]
# idx refIdx
# 1: 1 1
# 2: 1 2
# 3: 1 3
# 4: 1 4
# 5: 5 5
# 6: 5 6
# 7: 6 7
# 8: 8 8
# 9: 8 9
#10: 8 10
#11: 11 11
#12: 11 12
#13: 12 13
# extract the above rows and count occurrences using dcast
dcast(rr[, {seq = idx:refIdx; dt[seq]}, by = 1:nrow(rr)], nrow ~ ActivityType)
# nrow Email Webinar
#1 1 1 0
#2 2 2 0
#3 3 2 1
#4 4 2 2
#5 5 0 1
#6 6 1 1
#7 7 2 0
#8 8 1 0
#9 9 1 1
#10 10 1 2
#11 11 0 1
#12 12 1 1
#13 13 2 0
Run Code Online (Sandbox Code Playgroud)
尝试一种方法,其中数据表既用于姓名和日期列表,又用于电子邮件数量的来源。这是data.table通过使用with参数DT中的 来完成的。代码可能如下所示:iDTby = .EACHI
library(data.table)
# convert character dates to Date types
dt$ActivityDate <- as.Date(dt$ActivityDate, "%m/%d/%Y")
# convert to a 'data.table' and define key
setDT(dt, key = "Name")
# count emails and webinars
dt <- dt[dt[,.(Name, type = ActivityType, date = ActivityDate)],
.(type, date,
Email = sum(ActivityType == "Email" & between(ActivityDate, date-21, date)),
Webinar = sum(ActivityType == "Webinar" & between(ActivityDate, date-21, date))),
by=.EACHI]
Run Code Online (Sandbox Code Playgroud)
以下使用与上面相同的方法,但包括一些更改,这些更改可能会将速度提高 30-40%,具体取决于您的数据。
setDT(dt, key = "Name")
dt[, ":="(ActivityDate = as.Date(dt$ActivityDate, "%m/%d/%Y"),
ActivityType = as.character(ActivityType) )]
dt4 <- dt[.(Name=Name, type=ActivityType, date=ActivityDate), {z=between(ActivityDate, date-21, date);
.( type, date,
Email=sum( (ActivityType %chin% "Email") & z),
Webinar=sum( (ActivityType %chin% "Webinar") & z) ) }
, by=.EACHI]
Run Code Online (Sandbox Code Playgroud)