我们如何确保计算值不会被复制回CPU/python内存,但仍可用于下一步的计算?
以下代码显然不会这样做:
import tensorflow as tf
a = tf.Variable(tf.constant(1.),name="a")
b = tf.Variable(tf.constant(2.),name="b")
result = a + b
stored = result
with tf.Session() as s:
val = s.run([result,stored],{a:1.,b:2.})
print(val) # 3
val=s.run([result],{a:4.,b:5.})
print(val) # 9
print(stored.eval()) # 3 NOPE:
Run Code Online (Sandbox Code Playgroud)
错误:尝试使用未初始化的值_recv_b_0
答案是tf.Variable
通过使用assign操作将值存储到a中来存储:
工作代码:
import tensorflow as tf
with tf.Session() as s:
a = tf.Variable(tf.constant(1.),name="a")
b = tf.Variable(tf.constant(2.),name="b")
result = a + b
stored = tf.Variable(tf.constant(0.),name="stored_sum")
assign_op=stored.assign(result)
val,_ = s.run([result,assign_op],{a:1.,b:2.})
print(val) # 3
val=s.run(result,{a:4.,b:5.})
print(val[0]) # 9
print(stored.eval()) # ok, still 3
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
924 次 |
最近记录: |