JDS*_*JDS 3 matlab vector image-processing matrix convolution
我在MATLAB中玩图像处理算法.其中一个基本的是用高斯卷积图像.我在灰度800x600图像上运行了以下测试:
function [Y1, Y2] = testConvolveTime(inputImage)
[m,n] = size(inputImage);
% casting...
inputImage = cast(inputImage, 'single');
Gvec = [1 4 6 4 1]; % sigma=1;
Y1 = zeros(size(inputImage)); % modify it
Y2 = zeros(size(inputImage)); % modify it
%%%%%%%%%%%%%%%%%%% MATLAB CONV %%%%%%%%%%%%%%%%%%%%%
t1 = cputime;
for i=1:m
Y1(i,:) = conv(inputImage(i,:),Gvec,'same');
end
for j=1:n
Y1(:,j) = conv(inputImage(:,j),Gvec','same');
end
Y1 = round(Y1 / 16);
e1 = cputime - t1
%%%%%%%%%%%%%%%%%%% HAND-CODED CONV %%%%%%%%%%%%%%%%%%%%%
t2 = cputime;
for i=1:m
Y2(i,:) = myConv(inputImage(i,:),Gvec)';
end
for j=1:n
Y2(:,j) = myConv(inputImage(:,j),Gvec');
end
Y2 = round(Y2 / 16);
e2 = cputime - t2
end
Run Code Online (Sandbox Code Playgroud)
这是我编写的实现2个向量的卷积的代码:
% mimic MATLAB's conv(u,v,'same') function
% always returns column vec
function y = myConv(u_in, v_in)
len1 = length(u_in);
len2 = length(v_in);
if (len1 >= len2)
u = u_in;
v = v_in;
else
u = v_in;
v = u_in;
end
% from here on: v is the shorter vector (len1 >= len2)
len1 = length(u);
len2 = length(v);
maxLen = len1 + len2 - 1;
ytemp = zeros(maxLen,1);
% first part -- partial overlap
for i=1:len2-1
sum = 0;
for j=1:i
sum = sum + u(i-j+1)*v(j);
end
ytemp(i) = sum;
end
% main part -- complete overlap
for i=len2:len1
sum = 0;
for j=1:len2
sum = sum + u(i-j+1)*v(j);
end
ytemp(i) = sum;
end
% finally -- end portion
for i=len1+1:maxLen
%i-len1+1
sum = 0;
for j=i-len1+1:len2
sum = sum + u(i-j+1)*v(j);
end
ytemp(i) = sum;
end
%y = ytemp;
startIndex = round((maxLen - length(u_in))/2 + 1);
y = ytemp(startIndex:startIndex+length(u_in)-1);
% ^ note: to match MATLAB's conv(u,v,'same'), the output length must be
% that of the first argument.
end
Run Code Online (Sandbox Code Playgroud)
这是我的测试结果:
>> [Y1, Y2] = testConvolveTime(A1);
e1 =
0.5313
e2 =
195.8906
>> norm(Y1 - Y2)
ans =
0
Run Code Online (Sandbox Code Playgroud)
标准为0验证数学正确性.我的问题如下:
1)我的手工编码功能如何比使用MATLAB转换器的功能慢360倍?
2)即使MATLAB的转换对于图像处理仍然"慢".如果使用高斯进行卷积需要0.5秒,那么实时运行任何图像处理算法(例如24 FPS)有什么希望?作为参考,我的CPU是Intel N3540 @ 2.16 GHz.w/8GB的RAM.
3)^真正的问题:当我在C++上切换到OpenCV时,这样的操作会变得更快吗?
感谢您的任何见解,非常感谢.
1)conv速度快得多,因为它是一个内置的本机函数,而你的函数是用嵌套循环解释MATLAB代码的.
2)尝试imfilter图像处理工具箱.它可能比它更快conv,并且它适用于uint8数组.或者,如果您获得更新版本的MATLAB,并且只需要高斯滤波器,请尝试imgaussfilt.
| 归档时间: |
|
| 查看次数: |
644 次 |
| 最近记录: |