Jer*_*nes 1 python arrays numpy scikit-image
输入是灰度图像,转换为 130x130 numpy 矩阵。我总是收到错误:
Traceback (most recent call last):
  File "test_final.py", line 87, in <module>
    a._populate_gabor()
  File "C:\Users\Bears\Dropbox\School\Data Science\final.py", line 172, in _populate_gabor
    self.gabor_imgs[i] = self._matrix_2_1d(self._gabor_this(self.grey_imgs[i]),kernels[0])
  File "C:\Users\Bears\Dropbox\School\Data Science\final.py", line 179, in _gabor_this
    filtered = ndi.convolve(image, kernel, mode='reflect')
  File "C:\Users\Bears\Anaconda3\lib\site-packages\scipy\ndimage\filters.py", line 696, in convolve
    origin, True)
  File "C:\Users\Bears\Anaconda3\lib\site-packages\scipy\ndimage\filters.py", line 530, in _correlate_or_convolve
    raise RuntimeError('filter weights array has incorrect shape.')
RuntimeError: filter weights array has incorrect shape.
Run Code Online (Sandbox Code Playgroud)
我的代码如下
def _populate_gabor(self):
    kernels = []
    for theta in range(self.gabor_range[0],self.gabor_range[1]):
        theta = theta / 4. * np.pi
        for sigma in (1, 3):
            for frequency in (0.05, 0.25):
                kernel = np.real(gabor_kernel(frequency, theta=theta,
                                      sigma_x=sigma, sigma_y=sigma))
                kernels.append(kernel)
    print (len(kernels))
    for i in range(self.length):
        self.gabor_imgs[i] = self._matrix_2_1d(self._gabor_this(self.grey_imgs[i]),kernels[0])
def _gabor_this(image, kernels): 
    feats = np.zeros((len(kernels), 2), dtype=np.double)
    for k, kernel in enumerate(kernels):
        filtered = ndi.convolve(image, kernel, mode='reflect')
        feats[k, 0] = filtered.mean()
        feats[k, 1] = filtered.var()
    return feats
Run Code Online (Sandbox Code Playgroud)
我直接从http://scikit-image.org/docs/dev/auto_examples/plot_gabor.html的示例中获取了此代码,但我不知道如何解决此错误。任何帮助,将不胜感激。请注意,所有其他函数都在与其他过滤器一起使用,而不是 gabor。
似乎您正在使用 scipy 的“ndimage.convolve”函数。请记住,ndimage 提供了一个“N”维卷积。所以如果你想让卷积起作用,图像和核必须有相同的维数。其中任何一个尺寸不正确都会导致您描述的错误。
根据您上面的评论,内核 (4,4,7) 不能与图像 (130,130) 进行卷积。尝试在卷积之前添加一个单一维度,然后在之后将其删除。
img = np.zeros(shape=(130,130),dtype=np.float32)
img = img[:,:,None] # Add singleton dimension
result = convolve(img,kernel)
finalOutput = result.squeeze() # Remove singleton dimension
Run Code Online (Sandbox Code Playgroud)
        |   归档时间:  |  
           
  |  
        
|   查看次数:  |  
           10508 次  |  
        
|   最近记录:  |