Abt*_*Pst 28 python nlp nltk tf-idf scikit-learn
我正在研究关键字提取问题.考虑一般情况
tfidf = TfidfVectorizer(tokenizer=tokenize, stop_words='english')
t = """Two Travellers, walking in the noonday sun, sought the shade of a widespreading tree to rest. As they lay looking up among the pleasant leaves, they saw that it was a Plane Tree.
"How useless is the Plane!" said one of them. "It bears no fruit whatever, and only serves to litter the ground with leaves."
"Ungrateful creatures!" said a voice from the Plane Tree. "You lie here in my cooling shade, and yet you say I am useless! Thus ungratefully, O Jupiter, do men receive their blessings!"
Our best blessings are often the least appreciated."""
tfs = tfidf.fit_transform(t.split(" "))
str = 'tree cat travellers fruit jupiter'
response = tfidf.transform([str])
feature_names = tfidf.get_feature_names()
for col in response.nonzero()[1]:
print(feature_names[col], ' - ', response[0, col])
Run Code Online (Sandbox Code Playgroud)
这给了我
(0, 28) 0.443509712811
(0, 27) 0.517461475101
(0, 8) 0.517461475101
(0, 6) 0.517461475101
tree - 0.443509712811
travellers - 0.517461475101
jupiter - 0.517461475101
fruit - 0.517461475101
Run Code Online (Sandbox Code Playgroud)
这很好.对于任何新文档,有没有办法获得最高tfidf得分的前n项?
hum*_*ume 31
你必须做一些歌曲和舞蹈,以使矩阵成为numpy数组,但这应该做你正在寻找的:
feature_array = np.array(tfidf.get_feature_names())
tfidf_sorting = np.argsort(response.toarray()).flatten()[::-1]
n = 3
top_n = feature_array[tfidf_sorting][:n]
Run Code Online (Sandbox Code Playgroud)
这给了我:
array([u'fruit', u'travellers', u'jupiter'],
dtype='<U13')
Run Code Online (Sandbox Code Playgroud)
这个argsort
电话真的是有用的,这里是它的文档.我们必须这样做,[::-1]
因为argsort
只支持从小到大的排序.我们调用flatten
将尺寸减小到1d,以便排序的索引可用于索引1d特征数组.请注意,包含调用flatten
仅在您一次测试一个文档时才有效.
另外,另一方面,你的意思是什么tfs = tfidf.fit_transform(t.split("\n\n"))
?否则,多行字符串中的每个术语都被视为"文档".\n\n
相反,使用意味着我们实际上正在查看4个文档(每行一个),这在考虑tfidf时更有意义.
Ven*_*lam 11
使用稀疏矩阵本身的解决方案(没有.toarray()
)!
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
tfidf = TfidfVectorizer(stop_words='english')
corpus = [
'I would like to check this document',
'How about one more document',
'Aim is to capture the key words from the corpus',
'frequency of words in a document is called term frequency'
]
X = tfidf.fit_transform(corpus)
feature_names = np.array(tfidf.get_feature_names())
new_doc = ['can key words in this new document be identified?',
'idf is the inverse document frequency caculcated for each of the words']
responses = tfidf.transform(new_doc)
def get_top_tf_idf_words(response, top_n=2):
sorted_nzs = np.argsort(response.data)[:-(top_n+1):-1]
return feature_names[response.indices[sorted_nzs]]
print([get_top_tf_idf_words(response,2) for response in responses])
#[array(['key', 'words'], dtype='<U9'),
array(['frequency', 'words'], dtype='<U9')]
Run Code Online (Sandbox Code Playgroud)