Mig*_*ell 3 python group-by aggregate-functions python-3.x pandas
这应该很简单.我想要的是能够按函数的结果进行分组,就像在SQL中你可以按表达式分组:
SELECT substr(name, 1) as letter, COUNT(*) as count
FROM table
GROUP BY substr(name, 1)
Run Code Online (Sandbox Code Playgroud)
这将计算名称列以字母表的每个字母开头的行数.
我想在python中做同样的事情,所以我假设我可以将一个函数传递给groupby.但是,这只会将索引列(第一列)传递给函数,例如0,1或2.我想要的是名称列:
import pandas
# Return the first letter
def first_letter(row):
# row is 0, then 1, then 2 etc.
return row.name[0]
#Generate a data set of words
test = pandas.DataFrame({'name': ["benevolent", "hidden", "absurdity", "anonymous", "furious", "antidemocratic", "honeydew"]})
# name
# 0 benevolent
# 1 hidden
# 2 absurdity
# 3 anonymous
# 4 furious
# 5 antidemocratic
# 6 honeydew
test.groupby(first_letter)
Run Code Online (Sandbox Code Playgroud)
我在这做错了什么.除了行索引之外的其他东西如何组?
为第一个字母创建一个新列:
def first_letter(row):
return row[0]
test['first'] = test['name'].apply(first_letter)
Run Code Online (Sandbox Code Playgroud)
并将其分组:
group = test.groupby('first')
Run Code Online (Sandbox Code Playgroud)
用它:
>>> group.count()
name
first
a 3
b 1
f 1
h 2
Run Code Online (Sandbox Code Playgroud)