Tim*_*sto 5 python parallel-processing python-2.7 joblib
我正在尝试在python中使用joblib来加快某些数据处理的速度,但是在尝试确定如何将输出分配为所需格式时遇到了问题。我试图生成一个也许过于简单的代码来显示我所遇到的问题:
from joblib import Parallel, delayed
import numpy as np
def main():
print "Nested loop array assignment:"
regular()
print "Parallel nested loop assignment using a single process:"
par2(1)
print "Parallel nested loop assignment using multiple process:"
par2(2)
def regular():
# Define variables
a = [0,1,2,3,4]
b = [0,1,2,3,4]
# Set array variable to global and define size and shape
global ab
ab = np.zeros((2,np.size(a),np.size(b)))
# Iterate to populate array
for i in range(0,np.size(a)):
for j in range(0,np.size(b)):
func(i,j,a,b)
# Show array output
print ab
def par2(process):
# Define variables
a2 = [0,1,2,3,4]
b2 = [0,1,2,3,4]
# Set array variable to global and define size and shape
global ab2
ab2 = np.zeros((2,np.size(a2),np.size(b2)))
# Parallel process in order to populate array
Parallel(n_jobs=process)(delayed(func2)(i,j,a2,b2) for i in xrange(0,np.size(a2)) for j in xrange(0,np.size(b2)))
# Show array output
print ab2
def func(i,j,a,b):
# Populate array
ab[0,i,j] = a[i]+b[j]
ab[1,i,j] = a[i]*b[j]
def func2(i,j,a2,b2):
# Populate array
ab2[0,i,j] = a2[i]+b2[j]
ab2[1,i,j] = a2[i]*b2[j]
# Run script
main()
Run Code Online (Sandbox Code Playgroud)
其输出如下所示:
Nested loop array assignment:
[[[ 0. 1. 2. 3. 4.]
[ 1. 2. 3. 4. 5.]
[ 2. 3. 4. 5. 6.]
[ 3. 4. 5. 6. 7.]
[ 4. 5. 6. 7. 8.]]
[[ 0. 0. 0. 0. 0.]
[ 0. 1. 2. 3. 4.]
[ 0. 2. 4. 6. 8.]
[ 0. 3. 6. 9. 12.]
[ 0. 4. 8. 12. 16.]]]
Parallel nested loop assignment using a single process:
[[[ 0. 1. 2. 3. 4.]
[ 1. 2. 3. 4. 5.]
[ 2. 3. 4. 5. 6.]
[ 3. 4. 5. 6. 7.]
[ 4. 5. 6. 7. 8.]]
[[ 0. 0. 0. 0. 0.]
[ 0. 1. 2. 3. 4.]
[ 0. 2. 4. 6. 8.]
[ 0. 3. 6. 9. 12.]
[ 0. 4. 8. 12. 16.]]]
Parallel nested loop assignment using multiple process:
[[[ 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0.]]
[[ 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0.]]]
Run Code Online (Sandbox Code Playgroud)
从Google和StackOverflow搜索功能来看,使用joblib时似乎不会在每个子进程之间共享全局数组。我不确定这是否是joblib的限制,或者是否有解决方法?
实际上,我的脚本周围是其他代码位,这些代码依赖于此全局数组的最终输出为(4,x,x)格式,其中x是可变的(但通常在100到数千之间)。这是我目前考虑并行处理的原因,因为x = 2400 ,整个过程最多可能需要2个小时。
不必使用joblib(但我喜欢命名和简单性),因此可以随意建议简单的替代方法,最好牢记最终数组的要求。我正在使用python 2.7.3和joblib 0.7.1。
我能够使用 numpy 的 memmap 解决这个简单示例的问题。使用 memmap 并遵循joblib 文档网页上的示例后,我仍然遇到问题,但我通过 pip 升级到最新的 joblib 版本(0.9.3),并且一切运行顺利。这是工作代码:
from joblib import Parallel, delayed
import numpy as np
import os
import tempfile
import shutil
def main():
print "Nested loop array assignment:"
regular()
print "Parallel nested loop assignment using numpy's memmap:"
par3(4)
def regular():
# Define variables
a = [0,1,2,3,4]
b = [0,1,2,3,4]
# Set array variable to global and define size and shape
global ab
ab = np.zeros((2,np.size(a),np.size(b)))
# Iterate to populate array
for i in range(0,np.size(a)):
for j in range(0,np.size(b)):
func(i,j,a,b)
# Show array output
print ab
def par3(process):
# Creat a temporary directory and define the array path
path = tempfile.mkdtemp()
ab3path = os.path.join(path,'ab3.mmap')
# Define variables
a3 = [0,1,2,3,4]
b3 = [0,1,2,3,4]
# Create the array using numpy's memmap
ab3 = np.memmap(ab3path, dtype=float, shape=(2,np.size(a3),np.size(b3)), mode='w+')
# Parallel process in order to populate array
Parallel(n_jobs=process)(delayed(func3)(i,a3,b3,ab3) for i in xrange(0,np.size(a3)))
# Show array output
print ab3
# Delete the temporary directory and contents
try:
shutil.rmtree(path)
except:
print "Couldn't delete folder: "+str(path)
def func(i,j,a,b):
# Populate array
ab[0,i,j] = a[i]+b[j]
ab[1,i,j] = a[i]*b[j]
def func3(i,a3,b3,ab3):
# Populate array
for j in range(0,np.size(b3)):
ab3[0,i,j] = a3[i]+b3[j]
ab3[1,i,j] = a3[i]*b3[j]
# Run script
main()
Run Code Online (Sandbox Code Playgroud)
给出以下结果:
Nested loop array assignment:
[[[ 0. 1. 2. 3. 4.]
[ 1. 2. 3. 4. 5.]
[ 2. 3. 4. 5. 6.]
[ 3. 4. 5. 6. 7.]
[ 4. 5. 6. 7. 8.]]
[[ 0. 0. 0. 0. 0.]
[ 0. 1. 2. 3. 4.]
[ 0. 2. 4. 6. 8.]
[ 0. 3. 6. 9. 12.]
[ 0. 4. 8. 12. 16.]]]
Parallel nested loop assignment using numpy's memmap:
[[[ 0. 1. 2. 3. 4.]
[ 1. 2. 3. 4. 5.]
[ 2. 3. 4. 5. 6.]
[ 3. 4. 5. 6. 7.]
[ 4. 5. 6. 7. 8.]]
[[ 0. 0. 0. 0. 0.]
[ 0. 1. 2. 3. 4.]
[ 0. 2. 4. 6. 8.]
[ 0. 3. 6. 9. 12.]
[ 0. 4. 8. 12. 16.]]]
Run Code Online (Sandbox Code Playgroud)
我的一些想法要注意给未来的读者:
np.arange(0,10000),和b和B3到np.arange(0,1000)了12.4s的时间为“常规”方法和7.7s的JOBLIB方法。