Scikit-learn zip参数#1必须支持迭代

Jus*_* D. 6 machine-learning feature-selection scikit-learn

我有以下管道来在语料库上执行机器学习.它首先提取文本,用于TfidfVectorizer提取n-gram,然后选择最佳特征.没有功能选择步骤,管道工作正常.然而,有了它,我得到了

 Traceback (most recent call last):
  File "/usr/local/lib/python2.7/dist-packages/sklearn/pipeline.py", line 90, in __init__
    names, estimators = zip(*steps)
TypeError: zip argument #1 must support iteration
Run Code Online (Sandbox Code Playgroud)

SGDClassifier().

pipeline = Pipeline([
    # Use FeatureUnion to combine the features
    ('features', FeatureUnion(
        transformer_list=[
            # N-GRAMS
            ('ngrams', Pipeline([
                ('extractor', TextExtractor(normalized=True)), # returns a list of strings
                ('vectorizer', TfidfVectorizer(analyzer='word', strip_accents='ascii', use_idf=True, norm="l2", min_df=3, max_df=0.90)),
                ('feature_selection', SelectPercentile(score_func=chi2, percentile=70)),
            ])),
        ],,
    )),

    ('clf', Pipeline([
        SGDClassifier(n_jobs=-1, verbose=0)
    ])),
])
Run Code Online (Sandbox Code Playgroud)

Dav*_*ust 13

看起来你错过了管道中的标签

('clf', Pipeline([
    SGDClassifier(n_jobs=-1, verbose=0)
])),
Run Code Online (Sandbox Code Playgroud)

应该

('clf', Pipeline([
    ('sgd', SGDClassifier(n_jobs=-1, verbose=0))
])),
Run Code Online (Sandbox Code Playgroud)