Jus*_* D. 6 machine-learning feature-selection scikit-learn
我有以下管道来在语料库上执行机器学习.它首先提取文本,用于TfidfVectorizer提取n-gram,然后选择最佳特征.没有功能选择步骤,管道工作正常.然而,有了它,我得到了
Traceback (most recent call last):
File "/usr/local/lib/python2.7/dist-packages/sklearn/pipeline.py", line 90, in __init__
names, estimators = zip(*steps)
TypeError: zip argument #1 must support iteration
Run Code Online (Sandbox Code Playgroud)
在SGDClassifier().
pipeline = Pipeline([
# Use FeatureUnion to combine the features
('features', FeatureUnion(
transformer_list=[
# N-GRAMS
('ngrams', Pipeline([
('extractor', TextExtractor(normalized=True)), # returns a list of strings
('vectorizer', TfidfVectorizer(analyzer='word', strip_accents='ascii', use_idf=True, norm="l2", min_df=3, max_df=0.90)),
('feature_selection', SelectPercentile(score_func=chi2, percentile=70)),
])),
],,
)),
('clf', Pipeline([
SGDClassifier(n_jobs=-1, verbose=0)
])),
])
Run Code Online (Sandbox Code Playgroud)
Dav*_*ust 13
看起来你错过了管道中的标签
('clf', Pipeline([
SGDClassifier(n_jobs=-1, verbose=0)
])),
Run Code Online (Sandbox Code Playgroud)
应该
('clf', Pipeline([
('sgd', SGDClassifier(n_jobs=-1, verbose=0))
])),
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2284 次 |
| 最近记录: |