Dim*_*iev 4 python apache-spark pyspark
我需要计算 Spark 中列表项的成对对称分数。IE score(x[i],x[j]) = score(x[j], x[i])。一种解决方案是使用x.cartesian(x). 然而,它将执行x**2操作而不是最少的必要操作x*(x+1)//2。
Spark 中解决此问题最有效的方法是什么?
附言。在纯 Python 中,我会使用迭代器,例如:
class uptrsq_range(object):
def __init__(self, n):
self._n_ = n
self._length = n*(n+1) // 2
def __iter__(self):
for ii in range(self._n_):
for jj in range(ii+1):
yield (ii,jj)
def __len__(self):
"""
recepe by sleblanc @ stackoverflow
"""
"This method returns the total number of elements"
if self._length:
return self._length
else:
raise NotImplementedError("Infinite sequence has no length")
# or simply return None / 0 depending
# on implementation
for i,j in uptrsq_range(len(x)):
score(x[i], x[j])
Run Code Online (Sandbox Code Playgroud)
最通用的方法是cartesian遵循filter。例如:
rdd = sc.parallelize(range(10))
pairs = rdd.cartesian(rdd).filter(lambda x: x[0] < x[1])
pairs.count()
## 45
Run Code Online (Sandbox Code Playgroud)
如果 RDD 相对较小,您可以收集、广播并flatMap:
xs = sc.broadcast(rdd.collect())
pairs = rdd.flatMap(lambda y: [(x, y) for x in xs.value if x < y])
pairs.count()
## 45
Run Code Online (Sandbox Code Playgroud)
如果可以在内部进一步过滤数据flatMap以减少生成值的数量,这尤其有用。
如果数据太大而无法收集/存储在内存中,但可以轻松计算(例如一系列数字)或可以从工作人员(本地可访问的数据库)有效访问,您可以flatMap如上所述或使用mapPartitions如下示例:
def some_function(iter):
import sqlite3
conn = sqlite3.connect('example.db')
c = conn.cursor()
query = ...
for x in iter:
# fetch some data from a database
c.execute(query, (x, ))
for y in c.fetchall():
yield (x, y)
rdd.mapPartitions(some_function)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
654 次 |
| 最近记录: |