pd1*_*176 9 python regex nlp nltk text-chunking
我写了以下正则表达式来标记某些短语模式
pattern = """
P2: {<JJ>+ <RB>? <JJ>* <NN>+ <VB>* <JJ>*}
P1: {<JJ>? <NN>+ <CC>? <NN>* <VB>? <RB>* <JJ>+}
P3: {<NP1><IN><NP2>}
P4: {<NP2><IN><NP1>}
"""
Run Code Online (Sandbox Code Playgroud)
此模式将正确标记短语,例如:
a = 'The pizza was good but pasta was bad'
Run Code Online (Sandbox Code Playgroud)
并提供2个短语的所需输出:
但是,如果我的句子是这样的:
a = 'The pizza was awesome and brilliant'
Run Code Online (Sandbox Code Playgroud)
仅匹配短语:
'pizza was awesome'
Run Code Online (Sandbox Code Playgroud)
而不是所期望的:
'pizza was awesome and brilliant'
Run Code Online (Sandbox Code Playgroud)
如何在我的第二个例子中加入正则表达式模式?
alv*_*vas 15
首先,让我们来看看NLTK给出的POS标签:
>>> from nltk import pos_tag
>>> sent = 'The pizza was awesome and brilliant'.split()
>>> pos_tag(sent)
[('The', 'DT'), ('pizza', 'NN'), ('was', 'VBD'), ('awesome', 'JJ'), ('and', 'CC'), ('brilliant', 'JJ')]
>>> sent = 'The pizza was good but pasta was bad'.split()
>>> pos_tag(sent)
[('The', 'DT'), ('pizza', 'NN'), ('was', 'VBD'), ('good', 'JJ'), ('but', 'CC'), ('pasta', 'NN'), ('was', 'VBD'), ('bad', 'JJ')]
Run Code Online (Sandbox Code Playgroud)
(注意:以上是NLTK v3.1的输出pos_tag
,旧版本可能不同)
您想要捕获的内容基本上是:
所以让我们用这些模式捕捉它们:
>>> from nltk import RegexpParser
>>> sent1 = ['The', 'pizza', 'was', 'awesome', 'and', 'brilliant']
>>> sent2 = ['The', 'pizza', 'was', 'good', 'but', 'pasta', 'was', 'bad']
>>> patterns = """
... P: {<NN><VBD><JJ><CC><JJ>}
... {<NN><VBD><JJ>}
... """
>>> PChunker = RegexpParser(patterns)
>>> PChunker.parse(pos_tag(sent1))
Tree('S', [('The', 'DT'), Tree('P', [('pizza', 'NN'), ('was', 'VBD'), ('awesome', 'JJ'), ('and', 'CC'), ('brilliant', 'JJ')])])
>>> PChunker.parse(pos_tag(sent2))
Tree('S', [('The', 'DT'), Tree('P', [('pizza', 'NN'), ('was', 'VBD'), ('good', 'JJ')]), ('but', 'CC'), Tree('P', [('pasta', 'NN'), ('was', 'VBD'), ('bad', 'JJ')])])
Run Code Online (Sandbox Code Playgroud)
这就是硬编码的"欺骗"!
让我们回到POS模式:
可以简化为:
所以你可以在正则表达式中使用可选的运算符,例如:
>>> patterns = """
... P: {<NN><VBD><JJ>(<CC><JJ>)?}
... """
>>> PChunker = RegexpParser(patterns)
>>> PChunker.parse(pos_tag(sent1))
Tree('S', [('The', 'DT'), Tree('P', [('pizza', 'NN'), ('was', 'VBD'), ('awesome', 'JJ'), ('and', 'CC'), ('brilliant', 'JJ')])])
>>> PChunker.parse(pos_tag(sent2))
Tree('S', [('The', 'DT'), Tree('P', [('pizza', 'NN'), ('was', 'VBD'), ('good', 'JJ')]), ('but', 'CC'), Tree('P', [('pasta', 'NN'), ('was', 'VBD'), ('bad', 'JJ')])])
Run Code Online (Sandbox Code Playgroud)
很可能你正在使用旧的标记器,这就是为什么你的模式不同但我猜你看到如何使用上面的例子捕获你需要的短语.
步骤是:
pos_tag
RegexpParser