How*_*ply 4 c# arrays biginteger
我正在解决这个问题,他们要求第一个斐波纳契数为1000位的索引,我的第一个想法是类似于:
BigInteger x = 1;
BigInteger y = 1;
BigInteger tmp = 0;
int currentIndex = 2;
while (x.NoOfDigits < 1000)
{
tmp = x + y;
y = x;
x = tmp;
currentIndex++;
}
return currentIndex;
Run Code Online (Sandbox Code Playgroud)
但是,据我所知,没有方法可以计算BigInteger的位数.这是真的?绕过它的一种方法是使用BigInteger的.ToString().Length方法,但我被告知字符串处理很慢.
BigInteger也有一个.ToByteArray(),我想把BigInteger转换成一个字节数组并检查该数组的长度 - 但我不认为这唯一地决定了BigInteger中的位数.
为了它的价值,我实现了另一种解决方法,即手动将Fibonacci数存储在数组中,并在数组填满后立即停止,并将其与基于.ToString的方法进行比较,大约为2.5时间慢,但第一种方法需要0.1秒,这也似乎很长一段时间.
编辑:我已经在下面的答案中测试了这两个建议(一个是BigInteger.Log,一个是MaxLimitMethod).我得到以下运行时间:
程序
using System;
using System.Collections.Generic;
using System.Numerics;
using System.Diagnostics;
class Program
{
static void Main(string[] args)
{
Stopwatch clock = new Stopwatch();
clock.Start();
int index1 = Algorithms.IndexOfNDigits(1000);
clock.Stop();
var elapsedTime1 = clock.Elapsed;
Console.WriteLine(index1);
Console.WriteLine("Original method: {0}",elapsedTime1);
Console.ReadKey();
clock.Reset();
clock.Start();
int index2 = Algorithms.StringMethod(1000);
clock.Stop();
var elapsedTime2 = clock.Elapsed;
Console.WriteLine(index2);
Console.WriteLine("StringMethod: {0}", elapsedTime2);
Console.ReadKey();
clock.Reset();
clock.Start();
int index3 = Algorithms.BigIntegerLogMethod(1000);
clock.Stop();
var elapsedTime3 = clock.Elapsed;
Console.WriteLine(index3);
Console.WriteLine("BigIntegerLogMethod: {0}", elapsedTime3);
Console.ReadKey();
clock.Reset();
clock.Start();
int index4 = Algorithms.MaxLimitMethod(1000);
clock.Stop();
var elapsedTime4 = clock.Elapsed;
Console.WriteLine(index4);
Console.WriteLine("MaxLimitMethod: {0}", elapsedTime4);
Console.ReadKey();
}
}
static class Algorithms
{
//Find the index of the first Fibonacci number of n digits
public static int IndexOfNDigits(int n)
{
if (n == 1) return 1;
int[] firstNumber = new int[n];
int[] secondNumber = new int[n];
firstNumber[0] = 1;
secondNumber[0] = 1;
int currentIndex = 2;
while (firstNumber[n-1] == 0)
{
int carry = 0, singleSum = 0;
int[] tmp = new int[n]; //Placeholder for the sum
for (int i = 0; i<n; i++)
{
singleSum = firstNumber[i] + secondNumber[i];
if (singleSum >= 10) carry = 1;
else carry = 0;
tmp[i] += singleSum % 10;
if (tmp[i] >= 10)
{
tmp[i] = 0;
carry = 1;
}
int countCarries = 0;
while (carry == 1)
{
countCarries++;
if (tmp[i + countCarries] == 9)
{
tmp[i + countCarries] = 0;
tmp[i + countCarries + 1] += 1;
carry = 1;
}
else
{
tmp[i + countCarries] += 1;
carry = 0;
}
}
}
for (int i = 0; i < n; i++ )
{
secondNumber[i] = firstNumber[i];
firstNumber[i] = tmp[i];
}
currentIndex++;
}
return currentIndex;
}
public static int StringMethod(int n)
{
BigInteger x = 1;
BigInteger y = 1;
BigInteger tmp = 0;
int currentIndex = 2;
while (x.ToString().Length < n)
{
tmp = x + y;
y = x;
x = tmp;
currentIndex++;
}
return currentIndex;
}
public static int BigIntegerLogMethod(int n)
{
BigInteger x = 1;
BigInteger y = 1;
BigInteger tmp = 0;
int currentIndex = 2;
while (Math.Floor(BigInteger.Log10(x) + 1) < n)
{
tmp = x + y;
y = x;
x = tmp;
currentIndex++;
}
return currentIndex;
}
public static int MaxLimitMethod(int n)
{
BigInteger maxLimit = BigInteger.Pow(10, n - 1);
BigInteger x = 1;
BigInteger y = 1;
BigInteger tmp = 0;
int currentIndex = 2;
while (x.CompareTo(maxLimit) < 0)
{
tmp = x + y;
y = x;
x = tmp;
currentIndex++;
}
return currentIndex;
}
}
Run Code Online (Sandbox Code Playgroud)
假设x> 0
int digits = (int)Math.Floor(BigInteger.Log10(x) + 1);
Run Code Online (Sandbox Code Playgroud)
会得到位数.
出于好奇,我测试了
int digits = x.ToString().Length;
Run Code Online (Sandbox Code Playgroud)
做法.对于10万次迭代,它比Log10解决方案慢3倍.
扩展我的评论 - 而不是基于数字的测试,基于超过具有问题上限的常量进行测试:
public static int MaxLimitMethod(int n)
{
BigInteger maxLimit = BigInteger.Pow(10, n);
BigInteger x = 1;
BigInteger y = 1;
BigInteger tmp = 0;
int currentIndex = 2;
while (x.CompareTo(maxLimit) < 0)
{
tmp = x + y;
y = x;
x = tmp;
currentIndex++;
}
return currentIndex;
}
Run Code Online (Sandbox Code Playgroud)
这应该会导致显着的性能提升.
| 归档时间: |
|
| 查看次数: |
1448 次 |
| 最近记录: |