Lea*_*wly 15 python mysql amazon-ec2 amazon-web-services
我有大约60GB的JSON文件,我使用Python解析,然后使用Python-MySQL Connector插入MySQL数据库.每个JSON文件大约500MB
我一直在使用带有辅助卷的AWS r3.xlarge EC2实例来保存60GB的JSON数据.
然后我使用AWS RDS r3.xlarge MySQL实例.这些实例都位于相同的区域和可用区域中.EC2实例使用以下Python脚本加载JSON,解析它然后将其插入MySQL RDS.我的python:
import json
import mysql.connector
from mysql.connector import errorcode
from pprint import pprint
import glob
import os
os.chdir("./json_data")
for file in glob.glob("*.json"):
with open(file, 'rU') as data_file:
results = json.load(data_file)
print('working on file:', file)
cnx = mysql.connector.connect(user='', password='',
host='')
cursor = cnx.cursor(buffered=True)
DB_NAME = 'DB'
def create_database(cursor):
try:
cursor.execute(
"CREATE DATABASE {} DEFAULT CHARACTER SET 'utf8'".format(DB_NAME))
except mysql.connector.Error as err:
print("Failed creating database: {}".format(err))
exit(1)
try:
cnx.database = DB_NAME
except mysql.connector.Error as err:
if err.errno == errorcode.ER_BAD_DB_ERROR:
create_database(cursor)
cnx.database = DB_NAME
else:
print(err)
exit(1)
add_overall_data = ("INSERT INTO master"
"(_sent_time_stamp, dt, ds, dtf, O_l, O_ln, O_Ls, O_a, D_l, D_ln, d_a)"
"VALUES (%(_sent_time_stamp)s, %(dt)s, %(ds)s, %(dtf)s, %(O_l)s, %(O_ln)s, %(O_Ls)s, %(O_a)s, %(D_l)s, %(D_ln)s, %(d_a)s)")
add_polyline = ("INSERT INTO polyline"
"(Overview_polyline, request_no)"
"VALUES (%(Overview_polyline)s, %(request_no)s)")
add_summary = ("INSERT INTO summary"
"(summary, request_no)"
"VALUES (%(summary)s, %(request_no)s)")
add_warnings = ("INSERT INTO warnings"
"(warnings, request_no)"
"VALUES (%(warnings)s, %(request_no)s)")
add_waypoint_order = ("INSERT INTO waypoint_order"
"(waypoint_order, request_no)"
"VALUES (%(waypoint_order)s, %(request_no)s)")
add_leg_data = ("INSERT INTO leg_data"
"(request_no, leg_dt, leg_ds, leg_O_l, leg_O_ln, leg_D_l, leg_D_ln, leg_html_inst, leg_polyline, leg_travel_mode)"
"VALUES (%(request_no)s, %(leg_dt)s, %(leg_ds)s, %(leg_O_l)s, %(leg_O_ln)s, %(leg_D_l)s, %(leg_D_ln)s, %(leg_html_inst)s, %(leg_polyline)s, %(leg_travel_mode)s)")
error_messages = []
for result in results:
if result["status"] == "OK":
for leg in result['routes'][0]['legs']:
try:
params = {
"_sent_time_stamp": leg['_sent_time_stamp'],
"dt": leg['dt']['value'],
"ds": leg['ds']['value'],
"dtf": leg['dtf']['value'],
"O_l": leg['start_location']['lat'],
"O_ln": leg['start_location']['lng'],
"O_Ls": leg['O_Ls'],
"O_a": leg['start_address'],
"D_l": leg['end_location']['lat'],
"D_ln": leg['end_location']['lng'],
"d_a": leg['end_address']
}
cursor.execute(add_overall_data, params)
query = ('SELECT request_no FROM master WHERE O_l = %s AND O_ln = %s AND D_l = %s AND D_ln = %s AND _sent_time_stamp = %s')
O_l = leg['start_location']['lat']
O_ln = leg['start_location']['lng']
D_l = leg['end_location']['lat']
D_ln = leg['end_location']['lng']
_sent_time_stamp = leg['_sent_time_stamp']
cursor.execute(query,(O_l, O_ln, D_l, D_ln, _sent_time_stamp))
request_no = cursor.fetchone()[0]
except KeyError, e:
error_messages.append(e)
params = {
"_sent_time_stamp": leg['_sent_time_stamp'],
"dt": leg['dt']['value'],
"ds": leg['ds']['value'],
"dtf": "000",
"O_l": leg['start_location']['lat'],
"O_ln": leg['start_location']['lng'],
"O_Ls": leg['O_Ls'],
"O_a": 'unknown',
"D_l": leg['end_location']['lat'],
"D_ln": leg['end_location']['lng'],
"d_a": 'unknown'
}
cursor.execute(add_overall_data, params)
query = ('SELECT request_no FROM master WHERE O_l = %s AND O_ln = %s AND D_l = %s AND D_ln = %s AND _sent_time_stamp = %s')
O_l = leg['start_location']['lat']
O_ln = leg['start_location']['lng']
D_l = leg['end_location']['lat']
D_ln = leg['end_location']['lng']
_sent_time_stamp = leg['_sent_time_stamp']
cursor.execute(query,(O_l, O_ln, D_l, D_ln, _sent_time_stamp))
request_no = cursor.fetchone()[0]
for overview_polyline in result['routes']:
params = {
"request_no": request_no,
"Overview_polyline": overview_polyline['overview_polyline']['points']
}
cursor.execute(add_polyline, params)
query = ('SELECT request_no FROM master WHERE O_l = %s AND O_ln = %s AND D_l = %s AND D_ln = %s AND _sent_time_stamp = %s')
O_l = leg['start_location']['lat']
O_ln = leg['start_location']['lng']
D_l = leg['end_location']['lat']
D_ln = leg['end_location']['lng']
_sent_time_stamp = leg['_sent_time_stamp']
cursor.execute(query,(O_l, O_ln, D_l, D_ln, _sent_time_stamp))
request_no = cursor.fetchone()[0]
for summary in result['routes']:
params = {
"request_no": request_no,
"summary": summary['summary']
}
cursor.execute(add_summary, params)
query = ('SELECT request_no FROM master WHERE O_l = %s AND O_ln = %s AND D_l = %s AND D_ln = %s AND _sent_time_stamp = %s')
O_l = leg['start_location']['lat']
O_ln = leg['start_location']['lng']
D_l = leg['end_location']['lat']
D_ln = leg['end_location']['lng']
_sent_time_stamp = leg['_sent_time_stamp']
cursor.execute(query,(O_l, O_ln, D_l, D_ln, _sent_time_stamp))
request_no = cursor.fetchone()[0]
for warnings in result['routes']:
params = {
"request_no": request_no,
"warnings": str(warnings['warnings'])
}
cursor.execute(add_warnings, params)
query = ('SELECT request_no FROM master WHERE O_l = %s AND O_ln = %s AND D_l = %s AND D_ln = %s AND _sent_time_stamp = %s')
O_l = leg['start_location']['lat']
O_ln = leg['start_location']['lng']
D_l = leg['end_location']['lat']
D_ln = leg['end_location']['lng']
_sent_time_stamp = leg['_sent_time_stamp']
cursor.execute(query,(O_l, O_ln, D_l, D_ln, _sent_time_stamp))
request_no = cursor.fetchone()[0]
for waypoint_order in result['routes']:
params = {
"request_no": request_no,
"waypoint_order": str(waypoint_order['waypoint_order'])
}
cursor.execute(add_waypoint_order, params)
query = ('SELECT request_no FROM master WHERE O_l = %s AND O_ln = %s AND D_l = %s AND D_ln = %s AND _sent_time_stamp = %s')
O_l = leg['start_location']['lat']
O_ln = leg['start_location']['lng']
D_l = leg['end_location']['lat']
D_ln = leg['end_location']['lng']
_sent_time_stamp = leg['_sent_time_stamp']
cursor.execute(query,(O_l, O_ln, D_l, D_ln, _sent_time_stamp))
request_no = cursor.fetchone()[0]
for steps in result['routes'][0]['legs'][0]['steps']:
params = {
"request_no": request_no,
"leg_dt": steps['dt']['value'],
"leg_ds": steps['ds']['value'],
"leg_O_l": steps['start_location']['lat'],
"leg_O_ln": steps['start_location']['lng'],
"leg_D_l": steps['end_location']['lat'],
"leg_D_ln": steps['end_location']['lng'],
"leg_html_inst": steps['html_instructions'],
"leg_polyline": steps['polyline']['points'],
"leg_travel_mode": steps['travel_mode']
}
cursor.execute(add_leg_data, params)
cnx.commit()
print('error messages:', error_messages)
cursor.close()
cnx.close()
print('finished' + file)
Run Code Online (Sandbox Code Playgroud)
关于MySQL数据库,使用MySQL Workbench我可以看到:
这个python脚本已经被淘汰了几天,但我只将大约20%的数据插入到MySQL中.
我的问题 - 如何识别瓶颈?它是Python脚本吗?它似乎使用了少量内存 - 我可以增加这个吗?我已经检查了InnoDB缓冲池大小(如何提高每秒MySQL数据库的InnoDB写入速度)并发现它很大:
SELECT @@innodb_buffer_pool_size;
+---------------------------+
| @@innodb_buffer_pool_size |
+---------------------------+
| 11674845184 |
+---------------------------+
Run Code Online (Sandbox Code Playgroud)
由于我在同一地区使用RDS和EC2实例,因此我认为不存在网络瓶颈.我应该寻找最大的节省点的指针非常受欢迎!
编辑
我想我可能偶然发现了这个问题.为了提高解析效率,我分别编写了每个级别的JSON.但是,我必须执行一个查询以匹配JSON的嵌套部分及其更高级别.使用小型数据库时,此查询的开销很低.我注意到这个db的插入速度急剧下降.这是因为它必须搜索更大且不断增长的数据库才能正确连接JSON数据.
除了等待之外,我不知道如何解决这个问题....
我在Python脚本中看不到任何表定义......但是当我们尝试进行大型数据操作时 - 我们总是会在加载到MySQL时禁用任何数据库索引 - 另外如果你有任何约束/外键强制 - 这应该当您加载时也被禁用。
通过 Connector/Python 连接时,自动提交默认处于禁用状态。
但我在您提供的代码中看不到任何提交选项
总结一下
禁用/删除(用于加载)
-- 索引
-- 约束 -- 外键 -- 触发器
在您的加载程序中
-- 禁用自动提交 -- 提交 n 条记录(N 将取决于您可用的缓冲区大小)
| 归档时间: |
|
| 查看次数: |
398 次 |
| 最近记录: |