iag*_*ito 11 python arrays numpy lazy-evaluation multidimensional-array
我喜欢使用np.fromiter
,numpy
因为它是一种构建np.array
对象的资源惰性方式.但是,它似乎不支持多维数组,这些数组也非常有用.
import numpy as np
def fun(i):
""" A function returning 4 values of the same type.
"""
return tuple(4*i + j for j in range(4))
# Trying to create a 2-dimensional array from it:
a = np.fromiter((fun(i) for i in range(5)), '4i', 5) # fails
# This function only seems to work for 1D array, trying then:
a = np.fromiter((fun(i) for i in range(5)),
[('', 'i'), ('', 'i'), ('', 'i'), ('', 'i')], 5) # painful
# .. `a` now looks like a 2D array but it is not:
a.transpose() # doesn't work as expected
a[0, 1] # too many indices (of course)
a[:, 1] # don't even think about it
Run Code Online (Sandbox Code Playgroud)
如何a
在保持基于生成器的这种惰性构造的同时成为多维数组?
ali*_*i_m 14
它本身np.fromiter
只支持构造一维数组,因此,它期望一个可迭代产生单个值而不是元组/列表/序列等.解决这个限制的一种方法是使用itertools.chain.from_iterable
懒惰'解包'输出将您的生成器表达式转换为单个1D值序列:
import numpy as np
from itertools import chain
def fun(i):
return tuple(4*i + j for j in range(4))
a = np.fromiter(chain.from_iterable(fun(i) for i in range(5)), 'i', 5 * 4)
a.shape = 5, 4
print(repr(a))
# array([[ 0, 1, 2, 3],
# [ 4, 5, 6, 7],
# [ 8, 9, 10, 11],
# [12, 13, 14, 15],
# [16, 17, 18, 19]], dtype=int32)
Run Code Online (Sandbox Code Playgroud)
对问题的简短更新:NumPy=1.23
现在可以完全执行示例中给出的操作:
import numpy as np
def fun(i):
"""A function returning 4 values of the same type."""
return tuple(4*i + j for j in range(4))
# Trying to create a 2-dimensional array from it:
a = np.fromiter((fun(i) for i in range(5)), dtype='4i', count=5)
# array([[ 0, 1, 2, 3],
# [ 4, 5, 6, 7],
# [ 8, 9, 10, 11],
# [12, 13, 14, 15],
# [16, 17, 18, 19]], dtype=int32)
Run Code Online (Sandbox Code Playgroud)
就我个人而言,我发现直接传递数据类型而不是使用字符串更具可读性(不是'i'
结果int32
而不是标准int64
):
a = np.fromiter((fun(i) for i in range(5)), dtype=np.dtype((int, 4)), count=5)
# array([[ 0, 1, 2, 3],
# [ 4, 5, 6, 7],
# [ 8, 9, 10, 11],
# [12, 13, 14, 15],
# [16, 17, 18, 19]])
Run Code Online (Sandbox Code Playgroud)
另请参阅fromiter的文档,其中包含类似的示例。