在Python中联系跟踪 - 使用时间序列

pus*_*kin 5 python time-series python-2.7 pandas

假设我有时间序列数据(x轴上的时间,yz平面上的坐标).

给定受感染用户的种子集,我想dt时间内获取与种子集中的点之间的距离的所有用户.这基本上只是联系人追踪.

什么是实现这一目标的聪明方法?

天真的方法是这样的:

points_at_end_of_iteration = []
for p in seed_set:
    other_ps = find_points_t_time_away(t)
    points_at_end_of_iteration += find_points_d_distance_away_from_set(other_ps)
Run Code Online (Sandbox Code Playgroud)

什么是更聪明的方法 - 最好将所有数据保存在RAM中(虽然我不确定这是否可行).熊猫是个不错的选择吗?我一直在考虑Bandicoot,但它似乎无法为我做到这一点.

如果我能改进这个问题,请告诉我 - 也许它太宽泛了.

编辑:

我认为上面提到的算法是有缺陷的.

这是否更好:

for user,time,pos in infected_set:
    info = get_next_info(user, time) # info will be a tuple: (t, pos)
    intersecting_users = find_intersecting_users(user, time, delta_t, pos, delta_pos) # intersect if close enough to the user's pos/time
    infected_set.add(intersecting_users)
    update_infected_set(user, info) # change last_time and last_pos (described below)
Run Code Online (Sandbox Code Playgroud)

infected_set 我认为应该是一个hashmap {user_id: {last_time: ..., last_pos: ...}, user_id2: ...}

一个潜在的问题是用户被独立处理,因此user2的下一个时间戳可能是user1之后的数小时或数天.

如果我进行插值以使每个用户都有每个时间点(比如一小时)的信息,那么联系人跟踪可能会更容易,尽管这会增加大量的数据量.

数据格式/样本

user_id = 123
timestamp = 2015-05-01 05:22:25
position = 12.111,-12.111 # lat,long
Run Code Online (Sandbox Code Playgroud)

有一个包含所有记录的csv文件:

uid1,timestamp1,position1
uid1,timestamp2,position2
uid2,timestamp3,position3
Run Code Online (Sandbox Code Playgroud)

还有一个文件目录(格式相同),其中每个文件对应一个用户.

records/uid1.csv
records/uid2.csv

Oli*_*uit 2

第一个插值解决方案:

# i would use a shelf (a persistent, dictionary-like object,
# included with python).
import shelve

# hashmap of clean users indexed by timestamp)
# { timestamp1: {uid1: (lat11, long11), uid12: (lat12, long12), ...},
#   timestamp2: {uid1: (lat21, long21), uid2: (lat22, long22), ...},
#   ...
# }
#
clean_users = shelve.open("clean_users.dat")

# load data in clean_users from csv (shelve use same syntax than
# hashmap). You will interpolate data (only data at a given timestamp
# will be in memory at the same time). Note: the timestamp must be a string

# hashmap of infected users indexed by timestamp (same format than clean_users)
infected_users = shelve.open("infected_users.dat")

# for each iteration
for iteration in range(1, N):

    # compute current timestamp because we interpolate each user has a location
    current_timestamp = timestamp_from_iteration(iteration)

    # get clean users for this iteration (in memory)
    current_clean_users = clean_user[current_timestamp]

    # get infected users for this iteration (in memory)
    current_infected_users = infected_user[current_timestamp]

    # new infected user for this iteration
    new_infected_users = dict()

    # compute new infected_users for this iteration from current_clean_users and
    # current_infected_users then store the result in new_infected_users

    # remove user in new_infected_users from clean_users

    # add user in new_infected_users to infected_users

# close the shelves
infected_users.close()
clean_users.close()
Run Code Online (Sandbox Code Playgroud)

没有插值的第二种解决方案:

# i would use a shelf (a persistent, dictionary-like object,
# included with python).
import shelve

# hashmap of clean users indexed by timestamp)
# { timestamp1: {uid1: (lat11, long11), uid12: (lat12, long12), ...},
#   timestamp2: {uid1: (lat21, long21), uid2: (lat22, long22), ...},
#   ...
# }
#
clean_users = shelve.open("clean_users.dat")

# load data in clean_users from csv (shelve use same syntax than
# hashmap). Note: the timestamp must be a string

# hashmap of infected users indexed by timestamp (same format than clean_users)
infected_users = shelve.open("infected_users.dat")


# for each iteration (not time related as previous version)
# could also stop when there is no new infected users in the iteration
for iteration in range(1, N):

    # new infected users for this iteration
    new_infected_users = dict()

    # get timestamp from infected_users
    for an_infected_timestamp in infected_users.keys():

        # get infected users for this time stamp 
        current_infected_users = infected_users[an_infected_timestamp]

        # get relevant timestamp from clean users
        for a_clean_timestamp in clean_users.keys():
            if time_stamp_in_delta(an_infected_timestamp, a_clean_timestamp):

                # get clean users for this clean time stamp
                current_clean_users = clean_users[a_clean_timestamp]

                # compute infected users from current_clean_users and
                # current_infected_users then append the result to
                # new_infected_users

        # remove user in new_infected_users from clean_users

        # add user in new_infected_users to infected_users

# close the shelves
infected_users.close()
clean_users.close()
Run Code Online (Sandbox Code Playgroud)