dan*_*451 5 python machine-learning neural-network supervised-learning tensorflow
我用谷歌的TensorFlow库建立了一个MLP .网络正在运行但不知何故它拒绝正确学习.无论输入实际是什么,它总是收敛到接近1.0的输出.
将完整的代码可以看出这里.
有任何想法吗?
的输入和输出(批次大小4)如下:
input_data = [[0., 0.], [0., 1.], [1., 0.], [1., 1.]] # XOR input
output_data = [[0.], [1.], [1.], [0.]] # XOR output
n_input = tf.placeholder(tf.float32, shape=[None, 2], name="n_input")
n_output = tf.placeholder(tf.float32, shape=[None, 1], name="n_output")
Run Code Online (Sandbox Code Playgroud)
隐藏层配置:
# hidden layer's bias neuron
b_hidden = tf.Variable(0.1, name="hidden_bias")
# hidden layer's weight matrix initialized with a uniform distribution
W_hidden = tf.Variable(tf.random_uniform([2, hidden_nodes], -1.0, 1.0), name="hidden_weights")
# calc hidden layer's activation
hidden = tf.sigmoid(tf.matmul(n_input, W_hidden) + b_hidden)
Run Code Online (Sandbox Code Playgroud)
输出层配置:
W_output = tf.Variable(tf.random_uniform([hidden_nodes, 1], -1.0, 1.0), name="output_weights") # output layer's weight matrix
output = tf.sigmoid(tf.matmul(hidden, W_output)) # calc output layer's activation
Run Code Online (Sandbox Code Playgroud)
我的学习方法如下:
loss = tf.reduce_mean(cross_entropy) # mean the cross_entropy
optimizer = tf.train.GradientDescentOptimizer(0.01) # take a gradient descent for optimizing
train = optimizer.minimize(loss) # let the optimizer train
Run Code Online (Sandbox Code Playgroud)
我尝试了两种交叉熵设置:
cross_entropy = -tf.reduce_sum(n_output * tf.log(output))
Run Code Online (Sandbox Code Playgroud)
和
cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(n_output, output)
Run Code Online (Sandbox Code Playgroud)
其中n_output描述的原始输出output_data和output我的网络的预测/计算值.
for循环中的训练(对于n个时期)如下:
cvalues = sess.run([train, loss, W_hidden, b_hidden, W_output],
feed_dict={n_input: input_data, n_output: output_data})
Run Code Online (Sandbox Code Playgroud)
我节省了成果cvalues用于调试printig loss,W_hidden...
无论我尝试过什么,当我测试我的网络,尝试验证输出时,它总是产生这样的东西:
(...)
step: 2000
loss: 0.0137040186673
b_hidden: 1.3272010088
W_hidden: [[ 0.23195425 0.53248233 -0.21644847 -0.54775208 0.52298909]
[ 0.73933059 0.51440752 -0.08397482 -0.62724304 -0.53347367]]
W_output: [[ 1.65939867]
[ 0.78912479]
[ 1.4831928 ]
[ 1.28612828]
[ 1.12486529]]
(--- finished with 2000 epochs ---)
(Test input for validation:)
input: [0.0, 0.0] | output: [[ 0.99339396]]
input: [0.0, 1.0] | output: [[ 0.99289012]]
input: [1.0, 0.0] | output: [[ 0.99346077]]
input: [1.0, 1.0] | output: [[ 0.99261558]]
Run Code Online (Sandbox Code Playgroud)
所以它无法正常学习,但无论输入哪个输入,总是收敛到接近1.0.
与此同时,在同事的帮助下,我能够修复我的解决方案,并希望将其发布为完整性.我的解决方案适用于交叉熵,无需更改训练数据.此外,它具有所需的输入形状(1,2),输出是标量.
它利用了AdamOptimizer其减小误差远小于更快GradientDescentOptimizer.有关优化程序的更多信息(和问题^^),请参阅此文章.
事实上,我的网络仅在400-800个学习步骤中产生了相当不错的结果.
在2000个学习步骤之后,输出几乎是"完美的":
step: 2000
loss: 0.00103311243281
input: [0.0, 0.0] | output: [[ 0.00019799]]
input: [0.0, 1.0] | output: [[ 0.99979786]]
input: [1.0, 0.0] | output: [[ 0.99996307]]
input: [1.0, 1.0] | output: [[ 0.00033751]]
Run Code Online (Sandbox Code Playgroud)
import tensorflow as tf
#####################
# preparation stuff #
#####################
# define input and output data
input_data = [[0., 0.], [0., 1.], [1., 0.], [1., 1.]] # XOR input
output_data = [[0.], [1.], [1.], [0.]] # XOR output
# create a placeholder for the input
# None indicates a variable batch size for the input
# one input's dimension is [1, 2] and output's [1, 1]
n_input = tf.placeholder(tf.float32, shape=[None, 2], name="n_input")
n_output = tf.placeholder(tf.float32, shape=[None, 1], name="n_output")
# number of neurons in the hidden layer
hidden_nodes = 5
################
# hidden layer #
################
# hidden layer's bias neuron
b_hidden = tf.Variable(tf.random_normal([hidden_nodes]), name="hidden_bias")
# hidden layer's weight matrix initialized with a uniform distribution
W_hidden = tf.Variable(tf.random_normal([2, hidden_nodes]), name="hidden_weights")
# calc hidden layer's activation
hidden = tf.sigmoid(tf.matmul(n_input, W_hidden) + b_hidden)
################
# output layer #
################
W_output = tf.Variable(tf.random_normal([hidden_nodes, 1]), name="output_weights") # output layer's weight matrix
output = tf.sigmoid(tf.matmul(hidden, W_output)) # calc output layer's activation
############
# learning #
############
cross_entropy = -(n_output * tf.log(output) + (1 - n_output) * tf.log(1 - output))
# cross_entropy = tf.square(n_output - output) # simpler, but also works
loss = tf.reduce_mean(cross_entropy) # mean the cross_entropy
optimizer = tf.train.AdamOptimizer(0.01) # take a gradient descent for optimizing with a "stepsize" of 0.1
train = optimizer.minimize(loss) # let the optimizer train
####################
# initialize graph #
####################
init = tf.initialize_all_variables()
sess = tf.Session() # create the session and therefore the graph
sess.run(init) # initialize all variables
#####################
# train the network #
#####################
for epoch in xrange(0, 2001):
# run the training operation
cvalues = sess.run([train, loss, W_hidden, b_hidden, W_output],
feed_dict={n_input: input_data, n_output: output_data})
# print some debug stuff
if epoch % 200 == 0:
print("")
print("step: {:>3}".format(epoch))
print("loss: {}".format(cvalues[1]))
# print("b_hidden: {}".format(cvalues[3]))
# print("W_hidden: {}".format(cvalues[2]))
# print("W_output: {}".format(cvalues[4]))
print("")
print("input: {} | output: {}".format(input_data[0], sess.run(output, feed_dict={n_input: [input_data[0]]})))
print("input: {} | output: {}".format(input_data[1], sess.run(output, feed_dict={n_input: [input_data[1]]})))
print("input: {} | output: {}".format(input_data[2], sess.run(output, feed_dict={n_input: [input_data[2]]})))
print("input: {} | output: {}".format(input_data[3], sess.run(output, feed_dict={n_input: [input_data[3]]})))
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2176 次 |
| 最近记录: |