我正在开发一个应用程序,预计将使用opencv删除图像背景,起初我尝试使用抓取,但它太慢,结果并不总是准确,然后我尝试使用阈值,虽然结果还没有关闭th grabcut ,它的速度非常快,看起来更好,所以我的代码首先查看图像色调并分析它的哪一部分显得更多,该部分被视为背景,问题有时会得到前景作为背景如下是我的代码:
private Bitmap backGrndErase()
{
Bitmap bitmap = BitmapFactory.decodeResource(getResources(), R.drawable.skirt);
Log.d(TAG, "bitmap: " + bitmap.getWidth() + "x" + bitmap.getHeight());
bitmap = ResizeImage.getResizedBitmap(bitmap, calculatePercentage(40, bitmap.getWidth()), calculatePercentage(40, bitmap.getHeight()));
Mat frame = new Mat();
Utils.bitmapToMat(bitmap, frame);
Mat hsvImg = new Mat();
List<Mat> hsvPlanes = new ArrayList<>();
Mat thresholdImg = new Mat();
// int thresh_type = Imgproc.THRESH_BINARY_INV;
//if (this.inverse.isSelected())
int thresh_type = Imgproc.THRESH_BINARY;
// threshold the image with the average hue value
hsvImg.create(frame.size(), CvType.CV_8U);
Imgproc.cvtColor(frame, hsvImg, Imgproc.COLOR_BGR2HSV);
Core.split(hsvImg, hsvPlanes);
// get the average hue value of the image
double threshValue = this.getHistAverage(hsvImg, hsvPlanes.get(0));
Imgproc.threshold(hsvPlanes.get(0), thresholdImg, threshValue, mThresholdValue, thresh_type);
// Imgproc.adaptiveThreshold(hsvPlanes.get(0), thresholdImg, 255, Imgproc.ADAPTIVE_THRESH_MEAN_C, Imgproc.THRESH_BINARY, 11, 2);
Imgproc.blur(thresholdImg, thresholdImg, new Size(5, 5));
// dilate to fill gaps, erode to smooth edges
Imgproc.dilate(thresholdImg, thresholdImg, new Mat(), new Point(-1, -1), 1);
Imgproc.erode(thresholdImg, thresholdImg, new Mat(), new Point(-1, -1), 3);
Imgproc.threshold(thresholdImg, thresholdImg, threshValue, mThresholdValue, Imgproc.THRESH_BINARY);
//Imgproc.adaptiveThreshold(thresholdImg, thresholdImg, 255, Imgproc.ADAPTIVE_THRESH_MEAN_C, Imgproc.THRESH_BINARY, 11, 2);
// create the new image
Mat foreground = new Mat(frame.size(), CvType.CV_8UC3, new Scalar(255, 255, 255));
frame.copyTo(foreground, thresholdImg);
Utils.matToBitmap(foreground,bitmap);
//return foreground;
alreadyRun = true;
return bitmap;
}
Run Code Online (Sandbox Code Playgroud)
负责Hue的方法:
private double getHistAverage(Mat hsvImg, Mat hueValues)
{
// init
double average = 0.0;
Mat hist_hue = new Mat();
// 0-180: range of Hue values
MatOfInt histSize = new MatOfInt(180);
List<Mat> hue = new ArrayList<>();
hue.add(hueValues);
// compute the histogram
Imgproc.calcHist(hue, new MatOfInt(0), new Mat(), hist_hue, histSize, new MatOfFloat(0, 179));
// get the average Hue value of the image
// (sum(bin(h)*h))/(image-height*image-width)
// -----------------
// equivalent to get the hue of each pixel in the image, add them, and
// divide for the image size (height and width)
for (int h = 0; h < 180; h++)
{
// for each bin, get its value and multiply it for the corresponding
// hue
average += (hist_hue.get(h, 0)[0] * h);
}
// return the average hue of the image
average = average / hsvImg.size().height / hsvImg.size().width;
return average;
}
Run Code Online (Sandbox Code Playgroud)
我会再次尝试 Grabcut,它是可用的最佳分割方法之一。这是 我得到的结果
cv::Mat bgModel,fgModel; // the models (internally used)
cv::grabCut(image,// input image
object_mask,// segmentation result
rectang,// rectangle containing foreground
bgModel,fgModel, // models
5,// number of iterations
cv::GC_INIT_WITH_RECT); // use rectangle
// Get the pixels marked as likely foreground
cv::compare(object_mask,cv::GC_PR_FGD,object_mask,cv::CMP_EQ);
cv::threshold(object_mask, object_mask, 0,255, CV_THRESH_BINARY); //ensure the mask is binary
Run Code Online (Sandbox Code Playgroud)
Grabcut 的唯一问题是您必须提供一个包含要提取的对象的矩形作为输入。除此之外它的效果非常好。