在 pandas 数据帧上使用布尔过滤器时出现 KeyError

Ben*_*ice 5 python boolean dataframe pandas keyerror

当一个数据帧中的日期时间对象位于另一个数据帧的日期时间对象范围内时,尝试合并两个数据帧。

继续获取:KeyError: 'cannot use a single bool to index into setitem' 在我发布的第二块代码中。

gametaxidf.loc[arrivemask, 'relevant'] = 1
Run Code Online (Sandbox Code Playgroud)

我假设它也会在下面的行中使用类似的命令发生。

这是给我带来麻烦的部分:

with open('/Users/benjaminprice/Desktop/TaxiCombined/Data/combinedtaxifiltered.csv', 'w') as csvfile: 
    fieldnames1 = ['index','pickup_datetime', 'dropoff_datetime', 'pickup_long', 'pickup_lat','dropoff_long','dropoff_lat','passenger_count','trip_distance','fare_amount','tip_amount','total_amount','stadium_code'] 
    writer = csv.DictWriter(csvfile, fieldnames=fieldnames1) 
    writer.writeheader()

for index, row in baseballdf.iterrows(): 
    gametimestart = row['Start.Time'] 
    gametimeend = row['End.Time'] 
    arrivemin = gametimestart - datetime.timedelta(minutes=120) 
    arrivemax = gametimeend - datetime.timedelta(minutes = 30) 
    departmin = gametimeend - datetime.timedelta(minutes = 60) 
    departmax = gametimeend + datetime.timedelta(minutes = 90)

    gametaxidf = combineddf[combineddf.DATE==row.DATE]
    gametaxidf['relevant']=0

    for index, row in gametaxidf.iterrows():
        arrivemask = (arrivemin < row['dropoff_datetime']) and (row['dropoff_datetime'] < arrivemax)
        departmask = (departmin < row['pickup_datetime']) and (row['pickup_datetime'] < departmax) 
        gametaxidf.loc[arrivemask, 'relevant'] = 1
        gametaxidf.loc[departmask, 'relevant'] = 1

        with open('/Users/benjaminprice/Desktop/TaxiCombined/Data/combinedtaxifiltered.csv','a') as combinedtaxi:
            gametaxidf.to_csv(combinedtaxi,header=None)
    print(str(index) + "done")
Run Code Online (Sandbox Code Playgroud)

Gametaxidf.head(5):

   index     pickup_datetime    dropoff_datetime  pickup_long  pickup_lat  \
0    195 2014-04-01 00:08:13 2014-04-01 00:15:32   -73.922218   40.827557   
1    344 2014-04-01 00:16:30 2014-04-01 00:20:38   -73.846046   40.754566   
2    558 2014-04-01 00:28:59 2014-04-01 00:36:36   -73.921692   40.831394   
3    744 2014-04-01 00:42:00 2014-04-01 00:49:46   -73.938080   40.804646   
4    776 2014-04-01 00:43:54 2014-04-01 00:53:22   -73.952652   40.810577   

   dropoff_long  dropoff_lat  passenger_count  trip_distance  fare_amount  \
0    -73.900620    40.856174                1           2.30          9.0   
1    -73.890259    40.753246                1           0.56          4.5   
2    -73.942719    40.823257                1           1.53          7.0   
3    -73.928490    40.830433                1           2.96         11.0   
4    -73.924332    40.827320                1           2.28         10.5   

   tip_amount  total_amount  stadium_code       DATE  relevant  
0           0          10.0           1.1 2014-04-01         0  
1           0           5.5           2.1 2014-04-01         0  
2           0           8.0           1.1 2014-04-01         0  
3           0          12.0           1.0 2014-04-01         0  
4           0          11.5           1.0 2014-04-01         0 
Run Code Online (Sandbox Code Playgroud)

还收到此警告:正在尝试在 DataFrame 的切片副本上设置值。

Try using .loc[row_indexer,col_indexer] = value instead
Run Code Online (Sandbox Code Playgroud)

但这让我继续下去......任何帮助都会很棒。

two*_*rec 5

这里

gametaxidf.loc[arrivemask, 'relevant'] = 1
Run Code Online (Sandbox Code Playgroud)

您正在尝试按运算符设置数据帧值.loc用于选择行的 Pandas 文档说:

.loc 主要基于标签,但也可以与布尔数组一起使用。当未找到项目时 .loc 将引发 KeyError。允许的输入有:

  • 单个标签,例如 5 或“a”(请注意,5 被解释为索引的标签。此用途不是沿索引的整数位置)
  • 标签列表或数组 ['a', 'b', 'c']
  • 带有标签 'a':'f' 的切片对象(请注意,与通常的 Python 切片相反,开始和结束都包含在内!)
  • 布尔数组

您正在尝试使用最后一种输入类型,但是这个

arrivemask = (arrivemin < row['dropoff_datetime']) and 
    (row['dropoff_datetime'] < arrivemax)
Run Code Online (Sandbox Code Playgroud)

是标量布尔值,而不是数组。

您不需要迭代数据框。熊猫为你做这件事。只需使用:

gametaxidf.loc[
   (arrivemin < gametaxidf['dropoff_datetime'])
   &
   (gametaxidf['dropoff_datetime'] < arrivemax)
   , 'relevant'] = 1
Run Code Online (Sandbox Code Playgroud)