我想要做的是生成一些随机数(不一定是单个数字)
29106
7438
5646
4487
9374
28671
92
13941
25226
10076
Run Code Online (Sandbox Code Playgroud)
然后计算我得到的位数:
count[0] = 3 Percentage = 6.82
count[1] = 5 Percentage = 11.36
count[2] = 6 Percentage = 13.64
count[3] = 3 Percentage = 6.82
count[4] = 6 Percentage = 13.64
count[5] = 2 Percentage = 4.55
count[6] = 7 Percentage = 15.91
count[7] = 5 Percentage = 11.36
count[8] = 3 Percentage = 6.82
count[9] = 4 Percentage = 9.09
Run Code Online (Sandbox Code Playgroud)
这是我正在使用的代码:
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
int main() {
int i;
srand(time(NULL));
FILE* fp = fopen("random.txt", "w");
// for(i = 0; i < 10; i++)
for(i = 0; i < 1000000; i++)
fprintf(fp, "%d\n", rand());
fclose(fp);
int dummy;
long count[10] = {0,0,0,0,0,0,0,0,0,0};
fp = fopen("random.txt", "r");
while(!feof(fp)) {
fscanf(fp, "%1d", &dummy);
count[dummy]++;
}
fclose(fp);
long sum = 0;
for(i = 0; i < 10; i++)
sum += count[i];
for(i = 0; i < 10; i++)
printf("count[%d] = %7ld Percentage = %5.2f\n",
i, count[i], ((float)(100 * count[i])/sum));
}
Run Code Online (Sandbox Code Playgroud)
如果我生成大量随机数(1000000),这是我得到的结果:
count[0] = 387432 Percentage = 8.31
count[1] = 728339 Percentage = 15.63
count[2] = 720880 Percentage = 15.47
count[3] = 475982 Percentage = 10.21
count[4] = 392678 Percentage = 8.43
count[5] = 392683 Percentage = 8.43
count[6] = 392456 Percentage = 8.42
count[7] = 391599 Percentage = 8.40
count[8] = 388795 Percentage = 8.34
count[9] = 389501 Percentage = 8.36
Run Code Online (Sandbox Code Playgroud)
请注意,1,2和3的命中次数太多.我尝试过多次运行,每次都得到非常相似的结果.
我试图理解什么可能导致1,2和3比任何其他数字更频繁地出现.
从Matt Joiner和Pascal Cuoq所指出的暗示,
我更改了要使用的代码
for(i = 0; i < 1000000; i++)
fprintf(fp, "%04d\n", rand() % 10000);
// pretty prints 0
// generates numbers in range 0000 to 9999
Run Code Online (Sandbox Code Playgroud)
这就是我得到的(多次运行时类似的结果):
count[0] = 422947 Percentage = 10.57
count[1] = 423222 Percentage = 10.58
count[2] = 414699 Percentage = 10.37
count[3] = 391604 Percentage = 9.79
count[4] = 392640 Percentage = 9.82
count[5] = 392928 Percentage = 9.82
count[6] = 392737 Percentage = 9.82
count[7] = 392634 Percentage = 9.82
count[8] = 388238 Percentage = 9.71
count[9] = 388352 Percentage = 9.71
Run Code Online (Sandbox Code Playgroud)
0,1和2受到青睐的原因是什么?
感谢大家.运用
int rand2(){
int num = rand();
return (num > 30000? rand2():num);
}
fprintf(fp, "%04d\n", rand2() % 10000);
Run Code Online (Sandbox Code Playgroud)
我明白了
count[0] = 399629 Percentage = 9.99
count[1] = 399897 Percentage = 10.00
count[2] = 400162 Percentage = 10.00
count[3] = 400412 Percentage = 10.01
count[4] = 399863 Percentage = 10.00
count[5] = 400756 Percentage = 10.02
count[6] = 399980 Percentage = 10.00
count[7] = 400055 Percentage = 10.00
count[8] = 399143 Percentage = 9.98
count[9] = 400104 Percentage = 10.00
Run Code Online (Sandbox Code Playgroud)
Mat*_*ner 46
rand()产生从一个值0到RAND_MAX.RAND_MAX设置INT_MAX在大多数平台上,可能是32767或2147483647.
对于上面给出的例子,它似乎RAND_MAX是32767.这将会把一个非常高的频率1,2并3为从价值的最显著的数字10000来32767.您可以在较小程度上观察到值,6并且7也会略微受到青睐.
ken*_*ytm 20
关于编辑的问题,
这是因为即使你,数字仍然不均匀分布% 10000.假设RAND_MAX == 32767,并且rand()完全统一.
对于从0开始计数的每10,000个数字,所有数字将统一显示(每个4,000个).但是,32,767不能被10,000整除.因此,这些2,768个数字将为最终计数提供更多前导0,1和2.
这2,768个数字的确切贡献是:
digits count
0 1857
1 1857
2 1625
3 857
4 857
5 857
6 855
7 815
8 746
9 746
Run Code Online (Sandbox Code Playgroud)
将最初的30,000个数字加12,000加到计数中,然后除以总数位数(4×32,768),可以得到预期的分布:
number probability (%)
0 10.5721
1 10.5721
2 10.3951
3 9.80911
4 9.80911
5 9.80911
6 9.80759
7 9.77707
8 9.72443
9 9.72443
Run Code Online (Sandbox Code Playgroud)
这是接近你得到的.
如果您想要真正统一的数字分布,您需要拒绝这2,768个数字:
int rand_4digits() {
const int RAND_MAX_4_DIGITS = RAND_MAX - RAND_MAX % 10000;
int res;
do {
res = rand();
} while (res >= RAND_MAX_4_DIGITS);
return res % 10000;
}
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1238 次 |
| 最近记录: |