同时运行多个tensorflow会话

use*_*768 15 python parallel-processing python-multiprocessing tensorflow

我试图在具有64个CPU的CentOS 7机器上同时运行几个TensorFlow会话.我的同事报告说他可以使用以下两个代码块在他的机器上使用4个内核生成并行加速:

mnist.py

import numpy as np
import input_data
from PIL import Image
import tensorflow as tf
import time


def main(randint):
    print 'Set new seed:', randint
    np.random.seed(randint)
    tf.set_random_seed(randint)
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

    # Setting up the softmax architecture
    x = tf.placeholder("float", [None, 784])
    W = tf.Variable(tf.zeros([784, 10]))
    b = tf.Variable(tf.zeros([10]))
    y = tf.nn.softmax(tf.matmul(x, W) + b)

    # Setting up the cost function
    y_ = tf.placeholder("float", [None, 10])
    cross_entropy = -tf.reduce_sum(y_*tf.log(y))
    train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

    # Initialization 
    init = tf.initialize_all_variables()
    sess = tf.Session(
        config=tf.ConfigProto(
            inter_op_parallelism_threads=1,
            intra_op_parallelism_threads=1
        )
    )
    sess.run(init)

    for i in range(1000):
        batch_xs, batch_ys = mnist.train.next_batch(100)
        sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

    correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

    print sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})

if __name__ == "__main__":
    t1 = time.time()
    main(0)
    t2 = time.time()
    print "time spent: {0:.2f}".format(t2 - t1)
Run Code Online (Sandbox Code Playgroud)

parallel.py

import multiprocessing
import numpy as np

import mnist
import time

t1 = time.time()
p1 = multiprocessing.Process(target=mnist.main,args=(np.random.randint(10000000),))
p2 = multiprocessing.Process(target=mnist.main,args=(np.random.randint(10000000),))
p3 = multiprocessing.Process(target=mnist.main,args=(np.random.randint(10000000),))
p1.start()
p2.start()
p3.start()
p1.join()
p2.join()
p3.join()
t2 = time.time()
print "time spent: {0:.2f}".format(t2 - t1)
Run Code Online (Sandbox Code Playgroud)

特别是,他说他观察到了

Running a single process took: 39.54 seconds
Running three processes took: 54.16 seconds
Run Code Online (Sandbox Code Playgroud)

但是,当我运行代码时:

python mnist.py
==> Time spent: 5.14

python parallel.py 
==> Time spent: 37.65
Run Code Online (Sandbox Code Playgroud)

正如您所看到的,通过使用多处理,我得到了显着的减速,而我的同事却没有.有没有人知道为什么会发生这种情况以及可以采取哪些措施来解决这个问题?

编辑

这是一些示例输出.请注意,加载数据似乎是并行发生的,但是训练单个模型在输出中具有非常顺序的外观(并且可以通过在top程序执行时查看CPU使用情况来验证)

#$ python parallel.py 
Set new seed: 9672406
Extracting MNIST_data/train-images-idx3-ubyte.gz
Set new seed: 4790824
Extracting MNIST_data/train-images-idx3-ubyte.gz
Set new seed: 8011659
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
I tensorflow/core/common_runtime/local_device.cc:25] Local device intra op parallelism threads: 1
I tensorflow/core/common_runtime/local_session.cc:45] Local session inter op parallelism threads: 1
0.9136
I tensorflow/core/common_runtime/local_device.cc:25] Local device intra op parallelism threads: 1
I tensorflow/core/common_runtime/local_session.cc:45] Local session inter op parallelism threads: 1
0.9149
I tensorflow/core/common_runtime/local_device.cc:25] Local device intra op parallelism threads: 1
I tensorflow/core/common_runtime/local_session.cc:45] Local session inter op parallelism threads: 1
0.8931
time spent: 41.36
Run Code Online (Sandbox Code Playgroud)

另一个编辑

假设我们希望确认问题似乎与TensorFlow有关,而不是多处理.我用mnist.py如下的大循环替换了内容:

def main(randint):
    c = 0
    for i in xrange(100000000):
        c += i
Run Code Online (Sandbox Code Playgroud)

输出:

#$ python mnist.py
==> time spent: 5.16
#$ python parallel.py 
==> time spent: 4.86
Run Code Online (Sandbox Code Playgroud)

因此,我认为这里的问题不在于多处理本身.

Yar*_*tov 0

一种可能性是您的会话尝试每个会话使用 64 个核心并互相干扰也许尝试NUM_CORES为每个会话设置较低的值

sess = tf.Session(
    tf.ConfigProto(inter_op_parallelism_threads=NUM_CORES,
                   intra_op_parallelism_threads=NUM_CORES))
Run Code Online (Sandbox Code Playgroud)