use*_*714 31 python join apache-spark apache-spark-sql pyspark
我正在使用Spark 1.3,并希望使用python接口(SparkSQL)加入多个列
以下作品:
我首先将它们注册为临时表.
numeric.registerTempTable("numeric")
Ref.registerTempTable("Ref")
test = numeric.join(Ref, numeric.ID == Ref.ID, joinType='inner')
Run Code Online (Sandbox Code Playgroud)
我现在想基于多个列加入它们.
我得到SyntaxError:语法无效:
test = numeric.join(Ref,
numeric.ID == Ref.ID AND numeric.TYPE == Ref.TYPE AND
numeric.STATUS == Ref.STATUS , joinType='inner')
Run Code Online (Sandbox Code Playgroud)
zer*_*323 58
您应该使用&/ |运算符并注意运算符优先级(==优先级低于按位AND和OR):
df1 = sqlContext.createDataFrame(
[(1, "a", 2.0), (2, "b", 3.0), (3, "c", 3.0)],
("x1", "x2", "x3"))
df2 = sqlContext.createDataFrame(
[(1, "f", -1.0), (2, "b", 0.0)], ("x1", "x2", "x3"))
df = df1.join(df2, (df1.x1 == df2.x1) & (df1.x2 == df2.x2))
df.show()
## +---+---+---+---+---+---+
## | x1| x2| x3| x1| x2| x3|
## +---+---+---+---+---+---+
## | 2| b|3.0| 2| b|0.0|
## +---+---+---+---+---+---+
Run Code Online (Sandbox Code Playgroud)
Flo*_*ian 33
另一种方法是:
df1 = sqlContext.createDataFrame(
[(1, "a", 2.0), (2, "b", 3.0), (3, "c", 3.0)],
("x1", "x2", "x3"))
df2 = sqlContext.createDataFrame(
[(1, "f", -1.0), (2, "b", 0.0)], ("x1", "x2", "x4"))
df = df1.join(df2, ['x1','x2'])
df.show()
Run Code Online (Sandbox Code Playgroud)
哪个输出:
+---+---+---+---+
| x1| x2| x3| x4|
+---+---+---+---+
| 2| b|3.0|0.0|
+---+---+---+---+
Run Code Online (Sandbox Code Playgroud)
主要优点是表连接的列不会在输出中重复,从而降低遇到错误的风险,例如:org.apache.spark.sql.AnalysisException: Reference 'x1' is ambiguous, could be: x1#50L, x1#57L.
每当两个表中的列具有不同的名称,(让我们在上面的例子说,df2有列y1,y2和y4),可以使用下面的语法:
df = df1.join(df2.withColumnRenamed('y1','x1').withColumnRenamed('y2','x2'), ['x1','x2'])
Run Code Online (Sandbox Code Playgroud)
小智 13
test = numeric.join(Ref,
on=[
numeric.ID == Ref.ID,
numeric.TYPE == Ref.TYPE,
numeric.STATUS == Ref.STATUS
], how='inner')
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
52482 次 |
| 最近记录: |