如何创建Tensorflow Tensorboard空图

Ano*_*ous 14 python tensorflow tensorboard

推出张量板 tensorboard --logdir=/home/vagrant/notebook

在tensorboard:6006>图表,它说没有找到图形定义文件.

要存储的曲线图中,创建一个tf.python.training.summary_io.SummaryWriter并且或者通过构造,或者通过调用其add_graph()方法通过曲线图.

import tensorflow as tf

sess = tf.Session()
writer = tf.python.training.summary_io.SummaryWriter("/home/vagrant/notebook", sess.graph_def)
Run Code Online (Sandbox Code Playgroud)

但是页面仍然是空的,我怎么能开始玩张量板呢?

目前的张量板

当前的Tensorboard

结果想要

一个可以添加节点的空图,可编辑.

更新

看起来像tensorboard无法创建图表来添加节点,拖动和编辑等(我对官方视频感到困惑).

运行https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/tutorials/mnist/fully_connected_feed.py,然后tensorboard --logdir=/home/vagrant/notebook/data才能查看图表

然而,似乎tensorflow只提供查看摘要的能力,没有什么不同,使其脱颖而出

mrr*_*rry 15

TensorBoard是一种用于可视化TensorFlow图并在训练和推理期间分析记录的指标的工具.该图是使用Python API创建的,然后使用该tf.train.SummaryWriter.add_graph()方法写出.将SummaryWriter写入的文件加载到TensorBoard时,您可以看到已保存的图形,并以交互方式浏览它.

但是,TensorBoard不是用于构建图形本身的工具.它没有任何支持向图表添加节点.


Nov*_*vak 12

从以下代码示例开始,我可以添加一行,如下所示:

import tensorflow as tf
import numpy as np
sess = tf.InteractiveSession()  #define a session
# Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3
x_data = np.random.rand(100).astype("float32")
y_data = x_data * 0.1 + 0.3

# Try to find values for W and b that compute y_data = W * x_data + b
# (We know that W should be 0.1 and b 0.3, but Tensorflow will
# figure that out for us.)
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = W * x_data + b

# Minimize the mean squared errors.
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

# Before starting, initialize the variables.  We will 'run' this first.
init = tf.initialize_all_variables()

# Launch the graph.
sess = tf.Session()
sess.run(init)

#### ----> ADD THIS LINE <---- ####
writer = tf.train.SummaryWriter("/tmp/test", sess.graph)

# Fit the line.
for step in xrange(201):
    sess.run(train)
    if step % 20 == 0:
        print(step, sess.run(W), sess.run(b))

# Learns best fit is W: [0.1], b: [0.3]
Run Code Online (Sandbox Code Playgroud)

然后从命令行运行tensorboard,指向相应的目录.这显示了对SummaryWriter的完整调用.请务必注意以下事项:

  1. SummaryWriter传递一个Session,因此必须在创建Session(或InteractiveSession)之后发生
  2. 该会话可以在程序的早期创建,但是当Session传递给SummaryWriter 时,该点存在的图形将写入TensorBoard将使用的文件.