从scikit-learn(sklearn)中的多类数据计算AUC和ROC曲线?

Sur*_*me0 5 python machine-learning roc scikit-learn auc

我正在尝试使用该scikit-learn模块来计算AUC并绘制ROC曲线以用于三个不同分类器的输出以比较其性能。我对这个主题还很陌生,我正在努力了解我应如何将数据输入到roc_curveauc函数中。

对于测试集中的每个项目,我都有三个分类器中每个分类器的真实值和输出。这些课程是['N', 'L', 'W', 'T']。另外,对于分类器输出的每个值,我都有一个置信度得分。如何将此信息传递给roc_curve函数?

我需要label_binarize输入数据吗?如何将[class, confidence]分类器输出的对列表转换为y_score期望的roc_curve

感谢您的任何帮助!关于ROC曲线的丰富资源也将有所帮助。

mak*_*kis 5

您需要使用label_binarize功能,然后才能绘制多类ROC。

使用虹膜数据的示例:

import matplotlib.pyplot as plt
from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import label_binarize
from sklearn.metrics import roc_curve, auc
from sklearn.multiclass import OneVsRestClassifier

iris = datasets.load_iris()
X = iris.data
y = iris.target

# Binarize the output
y = label_binarize(y, classes=[0, 1, 2])
n_classes = y.shape[1]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0)

classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True,
                                 random_state=0))
y_score = classifier.fit(X_train, y_train).decision_function(X_test)

fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
    fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
    roc_auc[i] = auc(fpr[i], tpr[i])
colors = cycle(['blue', 'red', 'green'])
for i, color in zip(range(n_classes), colors):
    plt.plot(fpr[i], tpr[i], color=color, lw=lw,
             label='ROC curve of class {0} (area = {1:0.2f})'
             ''.format(i, roc_auc[i]))
plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlim([-0.05, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic for multi-class data')
plt.legend(loc="lower right")
plt.show()
Run Code Online (Sandbox Code Playgroud)

在此处输入图片说明