Jac*_*cob 92
由Paul Bourke撰写
以下注释描述了如何在平面上找到两个圆之间的交点,使用以下符号.目的是找到两个点P 3 =(x 3,y 3)(如果它们存在).
首先计算圆心之间的距离d.d = || P 1 - P 0 ||.
- 如果d> r 0 + r 1则没有解,圆圈是分开的.
- 如果d <| r 0 - r 1 | 然后没有解决方案,因为一个圆圈包含在另一个圆圈内.
- 如果d = 0且r 0 = r 1则圆圈重合并且存在无限数量的解.
考虑到两个三角形P 0 P 2 P 3 和P 1 P 2 P 3,我们可以写
a 2 + h 2 = r 0 2且b 2 + h 2 = r 1 2
使用d = a + b我们可以求解a,
a =(r 0 2 - r 1 2 + d 2)/(2 d)
可以容易地示出,当两个圆在一个点处接触时,这减小到r 0,即:d = r 0 + r 1 通过将a代入第一个等式来求解h,h 2 = r 0 2 - a 2
所以
P 2 = P 0 + a(P 1 -P 0)/ d
最后,P 3 =(X 3,Y 3以P计)0 =(X 0,Y 0),P 1 =(X 1,Y 1)和P 2 =(X 2,Y 2),是
x 3 = x 2 + - h(y 1 -y 0)/ d
y 3 = y 2 - + h(x 1 -x 0)/ d
资料来源:http://paulbourke.net/geometry/circlesphere/
rob*_*ing 15
这是我基于Paul Bourke的文章的 C++实现.只有在有两个交叉点时它才有效,否则它可能会返回NaN NAN NAN NAN.
class Point{
public:
float x, y;
Point(float px, float py) {
x = px;
y = py;
}
Point sub(Point p2) {
return Point(x - p2.x, y - p2.y);
}
Point add(Point p2) {
return Point(x + p2.x, y + p2.y);
}
float distance(Point p2) {
return sqrt((x - p2.x)*(x - p2.x) + (y - p2.y)*(y - p2.y));
}
Point normal() {
float length = sqrt(x*x + y*y);
return Point(x/length, y/length);
}
Point scale(float s) {
return Point(x*s, y*s);
}
};
class Circle {
public:
float x, y, r, left;
Circle(float cx, float cy, float cr) {
x = cx;
y = cy;
r = cr;
left = x - r;
}
pair<Point, Point> intersections(Circle c) {
Point P0(x, y);
Point P1(c.x, c.y);
float d, a, h;
d = P0.distance(P1);
a = (r*r - c.r*c.r + d*d)/(2*d);
h = sqrt(r*r - a*a);
Point P2 = P1.sub(P0).scale(a/d).add(P0);
float x3, y3, x4, y4;
x3 = P2.x + h*(P1.y - P0.y)/d;
y3 = P2.y - h*(P1.x - P0.x)/d;
x4 = P2.x - h*(P1.y - P0.y)/d;
y4 = P2.y + h*(P1.x - P0.x)/d;
return pair<Point, Point>(Point(x3, y3), Point(x4, y4));
}
};
Run Code Online (Sandbox Code Playgroud)
这是Javascript中使用向量的实现.代码已有详细记录,您应该能够遵循它.这是原始来源
在这里观看现场演示:

// Let EPS (epsilon) be a small value
var EPS = 0.0000001;
// Let a point be a pair: (x, y)
function Point(x, y) {
this.x = x;
this.y = y;
}
// Define a circle centered at (x,y) with radius r
function Circle(x,y,r) {
this.x = x;
this.y = y;
this.r = r;
}
// Due to double rounding precision the value passed into the Math.acos
// function may be outside its domain of [-1, +1] which would return
// the value NaN which we do not want.
function acossafe(x) {
if (x >= +1.0) return 0;
if (x <= -1.0) return Math.PI;
return Math.acos(x);
}
// Rotates a point about a fixed point at some angle 'a'
function rotatePoint(fp, pt, a) {
var x = pt.x - fp.x;
var y = pt.y - fp.y;
var xRot = x * Math.cos(a) + y * Math.sin(a);
var yRot = y * Math.cos(a) - x * Math.sin(a);
return new Point(fp.x+xRot,fp.y+yRot);
}
// Given two circles this method finds the intersection
// point(s) of the two circles (if any exists)
function circleCircleIntersectionPoints(c1, c2) {
var r, R, d, dx, dy, cx, cy, Cx, Cy;
if (c1.r < c2.r) {
r = c1.r; R = c2.r;
cx = c1.x; cy = c1.y;
Cx = c2.x; Cy = c2.y;
} else {
r = c2.r; R = c1.r;
Cx = c1.x; Cy = c1.y;
cx = c2.x; cy = c2.y;
}
// Compute the vector <dx, dy>
dx = cx - Cx;
dy = cy - Cy;
// Find the distance between two points.
d = Math.sqrt( dx*dx + dy*dy );
// There are an infinite number of solutions
// Seems appropriate to also return null
if (d < EPS && Math.abs(R-r) < EPS) return [];
// No intersection (circles centered at the
// same place with different size)
else if (d < EPS) return [];
var x = (dx / d) * R + Cx;
var y = (dy / d) * R + Cy;
var P = new Point(x, y);
// Single intersection (kissing circles)
if (Math.abs((R+r)-d) < EPS || Math.abs(R-(r+d)) < EPS) return [P];
// No intersection. Either the small circle contained within
// big circle or circles are simply disjoint.
if ( (d+r) < R || (R+r < d) ) return [];
var C = new Point(Cx, Cy);
var angle = acossafe((r*r-d*d-R*R)/(-2.0*d*R));
var pt1 = rotatePoint(C, P, +angle);
var pt2 = rotatePoint(C, P, -angle);
return [pt1, pt2];
}
Run Code Online (Sandbox Code Playgroud)
为什么不直接使用7行最喜欢的程序语言(或可编程计算器!),如下所示.
假设你有P0坐标(x0,y0),P1坐标(x1,y1),r0和r1,你想找到P3坐标(x3,y3):
d=sqr((x1-x0)^2 + (y1-y0)^2)
a=(r0^2-r1^2+d^2)/(2*d)
h=sqr(r0^2-a^2)
x2=x0+a*(x1-x0)/d
y2=y0+a*(y1-y0)/d
x3=x2+h*(y1-y0)/d // also x3=x2-h*(y1-y0)/d
y3=y2-h*(x1-x0)/d // also y3=y2+h*(x1-x0)/d
Run Code Online (Sandbox Code Playgroud)