Ank*_*and 4 python algorithm optimization profiling factorial
我正在努力改善大数的因子计算的运行时间.
第一个简单循环和乘法的代码.
def calculate_factorial_multi(number):
'''
This function takes one agruments and
returns the factorials of that number
This function uses the approach successive multiplication
like 8! = 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1
'''
'''
If 0 or 1 retrun immediately
'''
if number == 1 or number == 0:
return 1
result = 1 # variable to hold the result
for x in xrange(1, number + 1, 1):
result *= x
return result
Run Code Online (Sandbox Code Playgroud)
此功能的配置结果:
对于n = 1000 - 总时间:0.001115秒
对于n = 10000 - 总时间:0.035327秒
对于n = 100000 - 总时间:3.77454 s.
从n = 100000的线轮廓仪中我可以看到大部分%时间用于乘法步骤'98 .8'
31 100000 3728380 37.3 98.8 result *= x
Run Code Online (Sandbox Code Playgroud)
所以试图将因子乘法减少一半,即偶数,从而减少力量.
下半场乘法代码:
def calculate_factorial_multi_half(number):
if number == 1 or number == 0:
return 1
handle_odd = False
upto_number = number
if number & 1 == 1:
upto_number -= 1
print upto_number
handle_odd = True
next_sum = upto_number
next_multi = upto_number
factorial = 1
while next_sum >= 2:
factorial *= next_multi
next_sum -= 2
next_multi += next_sum
if handle_odd:
factorial *= number
return factorial
Run Code Online (Sandbox Code Playgroud)
此功能的配置结果:
对于n = 1000 - 总时间:0.00115秒
对于n = 10000 - 总时间:0.023636秒
对于n = 100000 - 总时间:3.65019秒
这显示了中距离的一些改善,但在缩放方面没有太大改善.
在此函数中,大部分%时间都用于乘法.
61 50000 3571928 71.4 97.9 factorial *= next_multi.
Run Code Online (Sandbox Code Playgroud)
所以我厌倦了删除尾随零然后相乘.
没有尾随零代码.
def calculate_factorial_multi_half_trailO(number):
'''
Removes the trailling zeros
'''
if number == 1 or number == 0:
return 1
handle_odd = False
upto_number = number
if number & 1 == 1:
upto_number -= 1
handle_odd = True
next_sum = upto_number
next_multi = upto_number
factorial = 1
total_shift = 0
while next_sum >= 2:
factorial *= next_multi
shift = len(str(factorial)) - len(str(factorial).rstrip('0'))
total_shift += shift
factorial >>= shift
next_sum -= 2
next_multi += next_sum
if handle_odd:
factorial *= number
factorial <<= total_shift
return factorial
Run Code Online (Sandbox Code Playgroud)
此功能的配置结果:
对于n = 1000 - 总时间:0.061524秒
对于n = 10000 - 总时间:113.824秒
所以不是减少时间,因为字符串转换增加了时间,因为"96.2%"的时间花费在
22 500 59173 118.3 96.2 shift = len(str(factorial)) - len(str(factorial).rstrip('0')).
Run Code Online (Sandbox Code Playgroud)
所以我的问题是如何在不影响时间的情况下获得尾随零并有效地使用移位.
所有的分析都完成了.基本操作系统(Linux):64位,Ram:6GB
没有尾随零似乎不是很有效.
首先,我建议使用素数分解来减少乘法的总数,因为素数小于x
约x/lnx
.
def calculate_factorial_multi(number):
prime = [True]*(number + 1)
result = 1
for i in xrange (2, number+1):
if prime[i]:
#update prime table
j = i+i
while j <= number:
prime[j] = False
j += i
#calculate number of i in n!
sum = 0
t = i
while t <= number:
sum += number/t
t *= i
result *= i**sum
return result
Run Code Online (Sandbox Code Playgroud)
对于n = 10000,总时间:0.017s
对于n = 100000,总时间:2.047s
对于n = 500000,总时间:65.324s
(PS.在你的第一个程序中,对于n = 100000,我机器的总时间是3.454秒.)
现在让我们测试它是否有效而没有尾随零.尾随零的数量等于素数因子的数量5
在n!
.该计划是这样的
def calculate_factorial_multi2(number):
prime = [True]*(number + 1)
result = 1
factor2 = 0
factor5 = 0
for i in xrange (2, number+1):
if prime[i]:
#update prime table
j = i+i
while j <= number:
prime[j] = False
j += i
#calculate the number of i in factors of n!
sum = 0
t = i
while t <= number:
sum += number/t
t *= i
if i == 2:
factor2 = sum
elif i == 5:
factor5 = sum
else:
result *= i**sum
return (result << (factor2 - factor5))*(10**factor5)
Run Code Online (Sandbox Code Playgroud)
对于n = 10000,总时间:0.015s
对于n = 100000,总时间:1.896s
对于n = 500000,总时间:57.101s
它比以前快一点.所以没有尾随零似乎不是很有用