Zha*_*bul 32 c# multithreading
我正在创建两个线程,并向它们传递一个函数,该函数执行下面显示的代码10,000,000次.
大多数情况下,"5"打印到控制台.有时它是"3"或"4".很清楚为什么会这样.
但是,它也打印"6".这怎么可能?
class Program
{
private static int _state = 3;
static void Main(string[] args)
{
Thread firstThread = new Thread(Tr);
Thread secondThread = new Thread(Tr);
firstThread.Start();
secondThread.Start();
firstThread.Join();
secondThread.Join();
Console.ReadLine();
}
private static void Tr()
{
for (int i = 0; i < 10000000; i++)
{
if (_state == 3)
{
_state++;
if (_state != 4)
{
Console.Write(_state);
}
_state = 3;
}
}
}
}
Run Code Online (Sandbox Code Playgroud)
这是输出:
Rob*_*Rob 44
我想我已经弄清了导致这个问题的一系列事件:
线程1进入 if (_state == 3)
上下文切换
线程2进入if (_state == 3)
线程2增量状态(state = 4)
上下文切换
线程1 读 _state作4
上下文切换
线程2设置_state = 3
线程2进入if (_state == 3)
上下文切换
线程1执行 _state = 4 + 1
上下文切换
线程2 _state在5
线程2执行时读取_state = 5 + 1;
ace*_*ent 17
这是典型的竞争条件.编辑:事实上,有多种竞争条件.
它可以在_state3的任何时间发生,并且两个线程都if可以通过单个核心中的上下文切换同时到达语句,或者同时并行地在多个核心中.
这是因为++操作员首先读取_state然后递增它.在第一个if声明它会读5或甚至6 之后,有可能会有足够的时间.
编辑:如果你为N个线程推广这个例子,你可能会观察到一个高达3 + N + 1的数字.
当线程开始运行或者刚刚设置_state为3 时,这可能是正确的.
要避免这种情况,请在if语句周围使用锁定,或使用Interlocked访问权限_state,例如if (System.Threading.Interlocked.CompareAndExchange(ref _state, 3, 4) == 3)和System.Threading.Interlocked.Exchange(ref _state, 3).
如果你想保持竞争条件,你应该声明_state为volatile,否则你冒险在每个线程看到_state本地没有来自其他线程的更新.
或者,如果您将实现切换为变量和捕获该变量的闭包,则可以使用System.Threading.Volatile.Read和System.Threading.Volatile.Write,因为局部变量不能(并且将无法)声明.在这种情况下,甚至必须使用易失性写入进行初始化._stateTrvolatile
编辑:如果我们通过扩展每个读取稍微更改代码,也许竞争条件更明显:
// Without some sort of memory barrier (volatile, lock, Interlocked.*),
// a thread is allowed to see _state as if other threads hadn't touched it
private static volatile int _state = 3;
// ...
for (int i = 0; i < 10000000; i++)
{
int currentState;
currentState = _state;
if (currentState == 3)
{
// RACE CONDITION: re-read the variable
currentState = _state;
currentState = currentState + 1:
// RACE CONDITION: non-atomic write
_state = currentState;
currentState = _state;
if (currentState != 4)
{
// RACE CONDITION: re-read the variable
currentState = _state;
Console.Write(currentState);
}
_state = 3;
}
}
Run Code Online (Sandbox Code Playgroud)
我在_state可能与之前的变量读取语句假设不同的地方添加了注释.
这是一个很长的图表,它显示甚至可以连续两次打印6次,每次打印一次,就像op发布的图像一样.请记住,线程可能无法同步运行,通常是由于抢先上下文切换,缓存停顿或核心速度差异(由于省电或临时turbo速度):
这个类似于原始类,但它使用Volatile类,其中state现在是闭包捕获的变量.易失性访问的数量和顺序变得明显:
static void Main(string[] args)
{
int state = 3;
ThreadStart tr = () =>
{
for (int i = 0; i < 10000000; i++)
{
if (Volatile.Read(ref state) == 3)
{
Volatile.Write(ref state, Volatile.Read(state) + 1);
if (Volatile.Read(ref state) != 4)
{
Console.Write(Volatile.Read(ref state));
}
Volatile.Write(ref state, 3);
}
}
};
Thread firstThread = new Thread(tr);
Thread secondThread = new Thread(tr);
firstThread.Start();
secondThread.Start();
firstThread.Join();
secondThread.Join();
Console.ReadLine();
}
Run Code Online (Sandbox Code Playgroud)
一些线程安全的方法:
private static object _lockObject;
// ...
// Do not allow concurrency, blocking
for (int i = 0; i < 10000000; i++)
{
lock (_lockObject)
{
// original code
}
}
// Do not allow concurrency, non-blocking
for (int i = 0; i < 10000000; i++)
{
bool lockTaken = false;
try
{
Monitor.TryEnter(_lockObject, ref lockTaken);
if (lockTaken)
{
// original code
}
}
finally
{
if (lockTaken) Monitor.Exit(_lockObject);
}
}
Run Code Online (Sandbox Code Playgroud)
// Do not allow concurrency, non-blocking
for (int i = 0; i < 10000000; i++)
{
// Only one thread at a time will succeed in exchanging the value
try
{
int previousState = Interlocked.CompareExchange(ref _state, 4, 3);
if (previousState == 3)
{
// Allow race condition on purpose (for no reason)
int currentState = Interlocked.CompareExchange(ref _state, 0, 0);
if (currentState != 4)
{
// This branch is never taken
Console.Write(currentState);
}
}
}
finally
{
Interlocked.CompareExchange(ref _state, 3, 4);
}
}
Run Code Online (Sandbox Code Playgroud)
// Allow concurrency
for (int i = 0; i < 10000000; i++)
{
// All threads increment the value
int currentState = Interlocked.Increment(ref _state);
if (currentState == 4)
{
// But still, only one thread at a time enters this branch
// Allow race condition on purpose (it may actually happen here)
currentState = Interlocked.CompareExchange(ref _state, 0, 0);
if (currentState != 4)
{
// This branch might be taken with a maximum value of 3 + N
Console.Write(currentState);
}
}
Interlocked.Decrement(ref _state);
}
Run Code Online (Sandbox Code Playgroud)
这个有点不同,它需要_state在增量之后的最后已知值执行某些操作:
// Allow concurrency
for (int i = 0; i < 10000000; i++)
{
// All threads increment the value
int currentState = Interlocked.Increment(ref _state);
if (currentState != 4)
{
// Only the thread that incremented 3 will not take the branch
// This can happen indefinitely after the first increment for N > 1
// This branch might be taken with a maximum value of 3 + N
Console.Write(currentState);
}
Interlocked.Decrement(ref _state);
}
Run Code Online (Sandbox Code Playgroud)
请注意,Interlocked.Increment/ Interlocked.Decrement示例并不安全,与lock/ Monitor和Interlocked.CompareExchange示例不同,因为没有可靠的方法来了解增量是否成功.
一种常见的方法是递增,然后使用try/ finally在finally块中递减的位置.但是,可能会抛出异步异常(例如ThreadAbortException)
异步异常可能会抛出到意外的位置,可能是每个机器指令:ThreadAbortException,StackOverflowException和OutOfMemoryException.
另一种方法是初始化currentState为低于3的值并在finally块中有条件地减少.但同样,在Interlocked.Increment返回和currentState分配给结果之间,可能会发生异步异常,因此currentState即使Interlocked.Increment成功,仍然可以具有初始值.