我试图提出一个问题,以便仅重写就足以证明目标。我想避免使用“聪明”的命题,而是使用可以由Coq计算的布尔值。
我定义了一个布尔测试函数member,如果一个元素在列表中,则different返回true;如果两个列表中都没有元素,则返回true。
我想证明我different只能使用重写为表达式member。
Theorem different_member: forall xs ys y,
different xs ys = ((negb (member y ys)) || negb (member y xs)).
Run Code Online (Sandbox Code Playgroud)
((negb X || Y)形式是布尔值)。
作为热身和现实检查,我想证明
Theorem diff_mem:
forall xs ys,
different xs ys = true -> forall y, member y xs = true -> ~ member y ys = true.
Run Code Online (Sandbox Code Playgroud)
进行的方式是通过在xs上进行归纳,但是我一直在搞弄最后一步。
非常感谢这两个定理的帮助!这是开发的相关部分。
Require Import Arith.
Require Import List.
Require Import Bool.
Import List.ListNotations.
Open Scope list.
Open Scope bool.
Fixpoint member x ys :=
match ys with
| [] => false
| y :: ys' => (beq_nat x y) || (member x ys')
end.
Lemma mem1: forall x, member x [] = false.
Proof. auto. Qed.
Lemma mem2: forall x y l, member x (y::l) = (beq_nat x y) || (member x l).
Proof. auto. Qed.
Fixpoint different xs ys :=
match xs with
| [] => true
| x::xs' => (negb (member x ys)) && (different xs' ys)
end.
Lemma diff1: forall ys, different [] ys = true.
Proof. auto. Qed.
Lemma diff2: forall x xs ys,
different (x::xs) ys = (negb (member x ys)) && (different xs ys).
Proof. auto. Qed.
Theorem diff_mem1: forall xs ys, different xs ys = true -> forall y, member y xs = true -> ~ member y ys = true.
Proof.
Abort.
Theorem different_member:
forall xs ys y, different xs ys =
((negb (member y ys)) || negb (member y xs)).
Proof.
Abort.
Run Code Online (Sandbox Code Playgroud)
编辑:
这是一个diff_mem1定理的证明。(睡在上面,在ProofGeneral中开始尝试之前思考一下有时会有所帮助...)。其他定理的证明遵循相同的结构。
但是,问题和最终目标仍然是如何通过重写和提示完全解决它,以便人们(几乎)可以做到induction xs; auto.。
Theorem diff_mem1: forall xs ys,
different xs ys = true -> forall y, member y xs = true -> ~ member y ys = true.
Proof.
induction xs as [|a xs]; intros ys Hdiff y Hxs Hys.
- inversion Hxs.
- (* we assume y is a member of ys, and of (a::xs) *)
(* it is also assumed that (a::xs) is different from ys *)
(* consider the cases y=a and y<>a *)
remember (beq_nat y a) as Q; destruct Q.
+ (* this case is absurd since y is a member of both ys and (y::xs) *)
apply eq_sym in HeqQ; apply beq_nat_true in HeqQ.
subst a.
simpl in Hdiff.
rewrite Hys in Hdiff.
inversion Hdiff.
+ (* this case is also absurd since y is a member of both ys and xs *)
simpl in Hdiff, Hxs.
rewrite <- HeqQ in Hxs.
simpl in Hxs.
rewrite Bool.andb_true_iff in Hdiff; destruct Hdiff as [_ Hdiff1].
destruct (IHxs ys Hdiff1 y Hxs Hys).
Qed.
Run Code Online (Sandbox Code Playgroud)
编辑2:
我将在@Arthur给出我为什么在初次尝试中失败时给出正确答案的结束语,但是为了完整起见,我想按照我的目标添加解决方案。
我写了一份Ltac战术my_simple_rewrite,该战术可以执行多种操作try rewrite with lemma_x in *(大约20种不同的引理,这些引理只能从左到右重写)。他们对简单的引理boolS和mem1,mem2,diff1,和diff2从上面。为了证明该定理,我仅使用了归纳变量xs和要对哪些bool表达式进行案例分析(使用自制Ltac bool_destruct),就得到了以下证明。
Theorem different_member:
forall xs ys, different xs ys = true ->
forall y, ((negb (member y ys)) || negb (member y xs)) = true.
Proof.
induction xs as [| a xs]; intros; my_simple_rewrite.
- congruence.
- try
match goal with
| [ HH:_ |- _] => (generalize (IHxs ys HH y); intro IH)
end;
bool_destruct (member a ys);
bool_destruct (member y ys);
bool_destruct (member a xs);
bool_destruct (member y xs);
bool_destruct (beq_nat y a);
my_simple_rewrite;
congruence.
Qed.
Run Code Online (Sandbox Code Playgroud)
这个想法是几乎可以实现自动化。可以自动选择要破坏的术语,并注意它会尝试使用任何可能引发问题的实例化归纳假设,(“如果可行,很好!否则请尝试下一个替代方案……”)。
供将来参考,完整的开发过程位于https://gist.github.com/larsr/10b6f4817b5117b335cc
结果的问题是它不成立。例如,尝试
Compute different [2] [1; 2]. (* false *)
Compute (negb (member 1 [2]) || negb (member 1 [1; 2])). (* true *)
Run Code Online (Sandbox Code Playgroud)
发生这种情况是因为,为了获得相反的结果,我们需要右侧对所有人有效y。正确的形式是:
forall xs ys,
different xs ys = true <->
(forall y, negb (member y xs) || negb (member x xs)).
Run Code Online (Sandbox Code Playgroud)
但是,将某些结果指定为布尔方程是正确的,这使它们在许多情况下更易于使用。例如,在Ssreflect库中大量使用此样式,他们在其中编写定理,例如:
eqn_leq : forall m n, (m == n) = (m <= n) && (n <= m)
Run Code Online (Sandbox Code Playgroud)
在这里,==和<=运算符是booelan函数,用于测试自然数是否相等和有序。第一个是通用的,适用于使用布尔相等函数声明的任何类型,该函数eqType在Ssreflect中称为。
这是使用Ssreflect的定理的一个版本:
Require Import Ssreflect.ssreflect Ssreflect.ssrfun Ssreflect.ssrbool.
Require Import Ssreflect.ssrnat Ssreflect.eqtype Ssreflect.seq.
Section Different.
Variable T : eqType.
Implicit Types xs ys : seq T.
Fixpoint disjoint xs ys :=
match xs with
| [::] => true
| x :: xs' => (x \notin ys) && disjoint xs' ys
end.
Lemma disjointP xs ys :
reflect (forall x, x \in xs -> x \notin ys)
(disjoint xs ys).
Proof.
elim: xs=> [|x xs IH] /=; first exact: ReflectT.
apply/(iffP andP)=> [[x_nin /IH {IH} IH] x'|xsP].
by rewrite inE=> /orP [/eqP ->|] //; auto.
apply/andP; rewrite xsP /= ?inE ?eqxx //.
apply/IH=> x' x'_in; apply: xsP.
by rewrite inE x'_in orbT.
Qed.
End Different.
Run Code Online (Sandbox Code Playgroud)
我已重命名different为disjoint,并使用了Ssreflect列表成员运算符\in和\notin,可用于任何元素中的列表eqType。请注意,语句disjointP具有从bool到的隐式转换Prop(映射b到b = true),并用reflect谓词声明,您可以将其视为类似于“ if and only if”的连接词,但将a Prop与a 关联bool。
Ssreflect广泛使用reflect谓词和视图机制(在/证明脚本上看到的符号)在同一事实的布尔语句和命题语句之间进行转换。因此,尽管我们不能用简单的布尔等式声明等价性,但是我们可以在reflect谓词中保留很多便利。例如:
Goal forall n, n \in [:: 1; 2; 3] -> n \notin [:: 4; 5; 6].
Proof. by apply/disjointP. Qed.
Run Code Online (Sandbox Code Playgroud)
这里发生的是Coq过去disjointP将上述目标转换为disjoint [:: 1; 2; 3] [:: 4; 5; 6]([:: ... ]只是列表的Ssreflect表示法),并且仅通过计算就可以发现该目标是正确的。