Dev*_*M S 8 csv scala histogram apache-spark rdd
我正在尝试使用Spark Scala计算CSV文件中所有列的直方图.
我发现DoubleRDDFunctions支持直方图.所以我编码如下所示获取所有列的直方图.
创建RDD[double] 每一列和计算每个直方图RDD使用DoubleRDDFunctions
var columnIndexArray = Array.tabulate(rdd.first().length) (_ * 1)
val histogramData = columnIndexArray.map(columns => {
rdd.map(lines => lines(columns)).histogram(6)
})
Run Code Online (Sandbox Code Playgroud)这是一个好方法吗?谁能提出一些更好的方法来解决这个问题?
提前致谢.
不是更好,但替代方法是将RDD转换为DataFrame并使用histogram_numericUDF.
示例数据:
import scala.util.Random
import org.apache.spark.sql.types._
import org.apache.spark.sql.functions.{callUDF, lit, col}
import org.apache.spark.sql.Row
import org.apache.spark.sql.hive.HiveContext
val sqlContext = new HiveContext(sc)
Random.setSeed(1)
val ncol = 5
val rdd = sc.parallelize((1 to 1000).map(
_ => Row.fromSeq(Array.fill(ncol)(Random.nextDouble))
))
val schema = StructType(
(1 to ncol).map(i => StructField(s"x$i", DoubleType, false)))
val df = sqlContext.createDataFrame(rdd, schema)
df.registerTempTable("df")
Run Code Online (Sandbox Code Playgroud)
查询:
val nBuckets = 3
val columns = df.columns.map(
c => callUDF("histogram_numeric", col(c), lit(nBuckets)).alias(c))
val histograms = df.select(columns: _*)
histograms.printSchema
// root
// |-- x1: array (nullable = true)
// | |-- element: struct (containsNull = true)
// | | |-- x: double (nullable = true)
// | | |-- y: double (nullable = true)
// |-- x2: array (nullable = true)
// | |-- element: struct (containsNull = true)
// | | |-- x: double (nullable = true)
// | | |-- y: double (nullable = true)
// |-- x3: array (nullable = true)
// | |-- element: struct (containsNull = true)
// | | |-- x: double (nullable = true)
// | | |-- y: double (nullable = true)
// |-- x4: array (nullable = true)
// | |-- element: struct (containsNull = true)
// | | |-- x: double (nullable = true)
// | | |-- y: double (nullable = true)
// |-- x5: array (nullable = true)
// | |-- element: struct (containsNull = true)
// | | |-- x: double (nullable = true)
// | | |-- y: double (nullable = true)
histograms.select($"x1").collect()
// Array([WrappedArray([0.16874313309969038,334.0],
// [0.513382068667877,345.0], [0.8421388886903808,321.0])])
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
5353 次 |
| 最近记录: |