我们如何使用SQL-esque"LIKE"标准加入两个Spark SQL数据帧?

Wil*_*man 5 python apache-spark apache-spark-sql pyspark

我们使用PySpark库与Spark 1.3.1连接.

我们有两个数据帧,documents_df := {document_id, document_text}keywords_df := {keyword}.我们想要{document_id, keyword}使用keyword_df.ocuword出现在document_df.document_text字符串中的条件来加入两个数据帧并返回带有对的结果数据帧.

例如,在PostgreSQL中,我们可以使用表单的ON子句来实现:

document_df.document_text ilike '%' || keyword_df.keyword || '%'

但是在PySpark中,我无法使用任何形式的连接语法.以前有人有过这样的经历吗?

亲切的问候,

zer*_*323 16

它有两种不同的方式,但一般来说不推荐.首先让我们创建一个虚拟数据:

from pyspark.sql import Row

document_row = Row("document_id", "document_text")
keyword_row = Row("keyword") 

documents_df = sc.parallelize([
    document_row(1L, "apache spark is the best"),
    document_row(2L, "erlang rocks"),
    document_row(3L, "but haskell is better")
]).toDF()

keywords_df = sc.parallelize([
    keyword_row("erlang"),
    keyword_row("haskell"),
    keyword_row("spark")
]).toDF()
Run Code Online (Sandbox Code Playgroud)
  1. Hive UDF

    documents_df.registerTempTable("documents")
    keywords_df.registerTempTable("keywords")
    
    query = """SELECT document_id, keyword
        FROM documents JOIN keywords
        ON document_text LIKE CONCAT('%', keyword, '%')"""
    
    like_with_hive_udf = sqlContext.sql(query)
    like_with_hive_udf.show()
    
    ## +-----------+-------+
    ## |document_id|keyword|
    ## +-----------+-------+
    ## |          1|  spark|
    ## |          2| erlang|
    ## |          3|haskell|
    ## +-----------+-------+
    
    Run Code Online (Sandbox Code Playgroud)
  2. Python UDF

    from pyspark.sql.functions import udf, col 
    from pyspark.sql.types import BooleanType
    
    # Of you can replace `in` with a regular expression
    contains = udf(lambda s, q: q in s, BooleanType())
    
    like_with_python_udf = (documents_df.join(keywords_df)
        .where(contains(col("document_text"), col("keyword")))
        .select(col("document_id"), col("keyword")))
    like_with_python_udf.show()
    
    ## +-----------+-------+
    ## |document_id|keyword|
    ## +-----------+-------+
    ## |          1|  spark|
    ## |          2| erlang|
    ## |          3|haskell|
    ## +-----------+-------+
    
    Run Code Online (Sandbox Code Playgroud)

为什么不推荐?因为在这两种情况下都需要笛卡尔积:

like_with_hive_udf.explain()

## TungstenProject [document_id#2L,keyword#4]
##  Filter document_text#3 LIKE concat(%,keyword#4,%)
##   CartesianProduct
##    Scan PhysicalRDD[document_id#2L,document_text#3]
##    Scan PhysicalRDD[keyword#4]

like_with_python_udf.explain()

## TungstenProject [document_id#2L,keyword#4]
##  Filter pythonUDF#13
##   !BatchPythonEvaluation PythonUDF#<lambda>(document_text#3,keyword#4), ...
##    CartesianProduct
##     Scan PhysicalRDD[document_id#2L,document_text#3]
##     Scan PhysicalRDD[keyword#4]
Run Code Online (Sandbox Code Playgroud)

如果没有完整的笛卡儿,还有其他方法可以达到类似的效果.

  1. 加入标记化文档 - 如果关键字列表很大,则需要在单个计算机的内存中处理

    from pyspark.ml.feature import Tokenizer
    from pyspark.sql.functions import explode
    
    tokenizer = Tokenizer(inputCol="document_text", outputCol="words")
    
    tokenized = (tokenizer.transform(documents_df)
        .select(col("document_id"), explode(col("words")).alias("token")))
    
    like_with_tokenizer = (tokenized
        .join(keywords_df, col("token") == col("keyword"))
        .drop("token"))
    
    like_with_tokenizer.show()
    
    ## +-----------+-------+
    ## |document_id|keyword|
    ## +-----------+-------+
    ## |          3|haskell|
    ## |          1|  spark|
    ## |          2| erlang|
    ## +-----------+-------+
    
    Run Code Online (Sandbox Code Playgroud)

    这需要随机播放但不是笛卡尔:

    like_with_tokenizer.explain()
    
    ## TungstenProject [document_id#2L,keyword#4]
    ##  SortMergeJoin [token#29], [keyword#4]
    ##   TungstenSort [token#29 ASC], false, 0
    ##    TungstenExchange hashpartitioning(token#29)
    ##     TungstenProject [document_id#2L,token#29]
    ##      !Generate explode(words#27), true, false, [document_id#2L, ...
    ##       ConvertToSafe
    ##        TungstenProject [document_id#2L,UDF(document_text#3) AS words#27]
    ##         Scan PhysicalRDD[document_id#2L,document_text#3]
    ##   TungstenSort [keyword#4 ASC], false, 0
    ##    TungstenExchange hashpartitioning(keyword#4)
    ##     ConvertToUnsafe
    ##      Scan PhysicalRDD[keyword#4]
    
    Run Code Online (Sandbox Code Playgroud)
  2. Python UDF和广播变量 - 如果关键字列表相对较小

    from pyspark.sql.types import ArrayType, StringType
    
    keywords = sc.broadcast(set(
        keywords_df.map(lambda row: row[0]).collect()))
    
    bd_contains = udf(
        lambda s: list(set(s.split()) & keywords.value), 
        ArrayType(StringType()))
    
    
    like_with_bd = (documents_df.select(
        col("document_id"), 
        explode(bd_contains(col("document_text"))).alias("keyword")))
    
    like_with_bd.show()
    
    ## +-----------+-------+
    ## |document_id|keyword|
    ## +-----------+-------+
    ## |          1|  spark|
    ## |          2| erlang|
    ## |          3|haskell|
    ## +-----------+-------+
    
    Run Code Online (Sandbox Code Playgroud)

    它既不需要shuffle也不需要Cartesian,但你仍然需要将广播变量传输到每个工作节点.

    like_with_bd.explain()
    
    ## TungstenProject [document_id#2L,keyword#46]
    ##  !Generate explode(pythonUDF#47), true, false, ...
    ##   ConvertToSafe
    ##    TungstenProject [document_id#2L,pythonUDF#47]
    ##     !BatchPythonEvaluation PythonUDF#<lambda>(document_text#3), ...
    ##      Scan PhysicalRDD[document_id#2L,document_text#3]
    
    Run Code Online (Sandbox Code Playgroud)
  3. 从Spark 1.6.0开始,您可以标记一个小数据帧,sql.functions.broadcast以获得与上面类似的效果,而无需使用UDF和显式广播变量.重用标记化数据:

    from pyspark.sql.functions import broadcast
    
    like_with_tokenizer_and_bd = (broadcast(tokenized)
        .join(keywords_df, col("token") == col("keyword"))
        .drop("token"))
    
    like_with_tokenizer.explain()
    
    ## TungstenProject [document_id#3L,keyword#5]
    ##  BroadcastHashJoin [token#10], [keyword#5], BuildLeft
    ##   TungstenProject [document_id#3L,token#10]
    ##    !Generate explode(words#8), true, false, ...
    ##     ConvertToSafe
    ##      TungstenProject [document_id#3L,UDF(document_text#4) AS words#8]
    ##       Scan PhysicalRDD[document_id#3L,document_text#4]
    ##   ConvertToUnsafe
    ##    Scan PhysicalRDD[keyword#5]
    
    Run Code Online (Sandbox Code Playgroud)

相关: