spa*_*ler 6 hadoop scala apache-spark
RDD已以格式创建,Array[Array[String]]
并具有以下值:
val rdd : Array[Array[String]] = Array(
Array("4580056797", "0", "2015-07-29 10:38:42", "0", "1", "1"),
Array("4580056797", "0", "2015-07-29 10:38:43", "0", "1", "1"))
Run Code Online (Sandbox Code Playgroud)
我想用架构创建一个dataFrame:
val schemaString = "callId oCallId callTime duration calltype swId"
Run Code Online (Sandbox Code Playgroud)
下一步:
scala> val rowRDD = rdd.map(p => Array(p(0), p(1), p(2),p(3),p(4),p(5).trim))
rowRDD: org.apache.spark.rdd.RDD[Array[String]] = MapPartitionsRDD[14] at map at <console>:39
scala> val calDF = sqlContext.createDataFrame(rowRDD, schema)
Run Code Online (Sandbox Code Playgroud)
给出以下错误:
console:45:error:重载方法值createDataFrame with alternatives:(rdd:org.apache.spark.api.java.JavaRDD [ ],beanClass:Class [ ])org.apache.spark.sql.DataFrame(rdd:org. apache.spark.rdd.RDD [ ],beanClass:Class [ ])org.apache.spark.sql.DataFrame(rowRDD:org.apache.spark.api.java.JavaRDD [org.apache.spark.sql.Row] ,schema:org.apache.spark.sql.types.StructType)org.apache.spark.sql.DataFrame(rowRDD:org.apache.spark.rdd.RDD [org.apache.spark.sql.Row],schema: org.apache.spark.sql.types.StructType)org.apache.spark.sql.DataFrame不能应用于(org.apache.spark.rdd.RDD [Array [String]],
org.apache.spark.sql. types.StructType)val calDF = sqlContext.createDataFrame(rowRDD,schema)
Ber*_*ium 12
只需粘贴到spark-shell
:
val a =
Array(
Array("4580056797", "0", "2015-07-29 10:38:42", "0", "1", "1"),
Array("4580056797", "0", "2015-07-29 10:38:42", "0", "1", "1"))
val rdd = sc.makeRDD(a)
case class X(callId: String, oCallId: String,
callTime: String, duration: String, calltype: String, swId: String)
Run Code Online (Sandbox Code Playgroud)
然后map()
通过RDD创建案例类的实例,然后使用toDF()
以下命令创建DataFrame :
scala> val df = rdd.map {
case Array(s0, s1, s2, s3, s4, s5) => X(s0, s1, s2, s3, s4, s5) }.toDF()
df: org.apache.spark.sql.DataFrame =
[callId: string, oCallId: string, callTime: string,
duration: string, calltype: string, swId: string]
Run Code Online (Sandbox Code Playgroud)
这推断出案例类的架构.
然后你可以继续:
scala> df.printSchema()
root
|-- callId: string (nullable = true)
|-- oCallId: string (nullable = true)
|-- callTime: string (nullable = true)
|-- duration: string (nullable = true)
|-- calltype: string (nullable = true)
|-- swId: string (nullable = true)
scala> df.show()
+----------+-------+-------------------+--------+--------+----+
| callId|oCallId| callTime|duration|calltype|swId|
+----------+-------+-------------------+--------+--------+----+
|4580056797| 0|2015-07-29 10:38:42| 0| 1| 1|
|4580056797| 0|2015-07-29 10:38:42| 0| 1| 1|
+----------+-------+-------------------+--------+--------+----+
Run Code Online (Sandbox Code Playgroud)
如果你想toDF()
在普通程序中使用(不在spark-shell
),请确保(引自此处):
import sqlContext.implicits._
在创建之后SQLContext
toDF()
归档时间: |
|
查看次数: |
28380 次 |
最近记录: |