Khu*_*hue 7 c++ computer-science opencv sift
从3.0版开始,DenseFeatureDetector不再可用.有人可以告诉我如何在OpenCV 3.0中计算密集SIFT功能吗?我在文档中找不到它.
非常感谢你提前!
P.R*_*.R. 11
您可以通过列表cv2.KeyPoints来sift.compute.这个例子是在Python中,但它显示了原理.我cv2.KeyPoint通过扫描图像的像素位置来创建一个s 列表:
import skimage.data as skid
import cv2
import pylab as plt
img = skid.lena()
gray= cv2.cvtColor(img ,cv2.COLOR_BGR2GRAY)
sift = cv2.xfeatures2d.SIFT_create()
step_size = 5
kp = [cv2.KeyPoint(x, y, step_size) for y in range(0, gray.shape[0], step_size)
for x in range(0, gray.shape[1], step_size)]
img=cv2.drawKeypoints(gray,kp, img)
plt.figure(figsize=(20,10))
plt.imshow(img)
plt.show()
dense_feat = sift.compute(gray, kp)
Run Code Online (Sandbox Code Playgroud)
小智 5
这是我在OpenCV 3 C ++中使用密集SIFT的方式:
SiftDescriptorExtractor sift;
vector<KeyPoint> keypoints; // keypoint storage
Mat descriptors; // descriptor storage
// manual keypoint grid
int step = 10; // 10 pixels spacing between kp's
for (int y=step; y<img.rows-step; y+=step){
for (int x=step; x<img.cols-step; x+=step){
// x,y,radius
keypoints.push_back(KeyPoint(float(x), float(y), float(step)));
}
}
// compute descriptors
sift.compute(img, keypoints, descriptors);
Run Code Online (Sandbox Code Playgroud)
复制自:http : //answers.opencv.org/question/73165/compute-dense-sift-features-in-opencv-30/?answer=73178#post-id-73178
似乎运作良好
| 归档时间: |
|
| 查看次数: |
4548 次 |
| 最近记录: |