我试图做出约束,以检查图中是否存在从顶点A到顶点B的路径。我已经做了一个约束,返回了路径本身,但是我还需要一个函数,该函数返回一个布尔值,指示路径是否存在。
我已经花了很多时间,但是我的尝试都没有成功...
有谁知道我该怎么办?
这是我制作的返回路径本身的函数,其中graph是一个邻接矩阵,source和target是顶点A和B:
function array [int] of var int: path(array[int,int] of int: graph, int: source, int: target)::promise_total =
let {
set of int: V = index_set_1of2(graph);
int: order = card(V);
set of int: indexes = 1..order;
array[indexes] of var (V union {-1}): path_array;
var indexes: path_nodes_count; % the 'size' of the path
constraint assert(index_set_1of2(graph) = index_set_2of2(graph), "The adjacency matrix is not square", true);
constraint assert({source, target} subset V, "Source and target must be vertexes", true);
constraint path_array[1] == source;
constraint path_array[path_nodes_count] == target;
constraint forall(i in 2..path_nodes_count) ( graph[ path_array[i-1], path_array[i] ] != 0 );
constraint forall(i in indexes, where i > path_nodes_count) ( path_array[i] = -1 );
constraint forall(i,j in indexes, where i<j /\ j<=path_nodes_count) ( path_array[i] != path_array[j] );
} in path_array;
Run Code Online (Sandbox Code Playgroud)
在这里,我尝试修改上面的代码之一:
predicate exists_path(array[int,int] of int: graph, int: source, int: target)::promise_total =
let {
set of int: V = index_set_1of2(graph);
int: order = card(V);
set of int: indexes = 1..order;
array[indexes] of var (V union {-1}): path_array;
constraint assert(index_set_1of2(graph) = index_set_2of2(graph), "The adjacency matrix is not square", true);
constraint assert({source, target} subset V, "Source and target must be vertexes", true);
}
in
exists(path_nodes_count in indexes) (
path_array[1] == source /\
path_array[path_nodes_count] == target /\
forall(i in 2..path_nodes_count) ( graph[ path_array[i-1], path_array[i] ] != 0 ) /\
forall(i,j in indexes, where i<j /\ j<=path_nodes_count) ( path_array[i] != path_array[j] )
);
Run Code Online (Sandbox Code Playgroud)
我正在使用以下模型测试约束:
int: N;
array[1..N, 1..N] of 0..1: adj_mat;
array[1..N] of var int: path;
% These should work:
constraint exists_path(adj_mat, 1, 3) = true;
constraint exists_path(adj_mat, 4, 1) = false;
% These should raise =====UNSATISFIABLE=====
constraint exists_path(adj_mat, 1, 3) = false;
constraint exists_path(adj_mat, 4, 1) = true;
solve satisfy;
% If you want to check the working constraint:
% constraint path = path(adj_mat, 1, 3);
% constraint path = path(adj_mat, 4, 1); <- This finds out that the model is unsatisfiable
% output[show(path)];
Run Code Online (Sandbox Code Playgroud)
这里是一些示例数据:
/* 1 -> 2 -> 3 -> 4 */
N=4;
adj_mat = [|
0, 1, 0, 0,|
0, 0, 1, 0,|
0, 0, 0, 1,|
0, 0, 0, 0 |];
%---------------------------------*/
/* Disconnected graph
1---2---6 4
\ / |
3 5 */
N=6;
adj_mat = [|
0, 1, 1, 0, 0, 0, |
1, 0, 1, 0, 0, 1, |
1, 1, 0, 0, 0, 0, |
0, 0, 0, 0, 1, 0, |
0, 0, 0, 1, 0, 0, |
0, 1, 0, 0, 0, 0 |];
%---------------------------------*/
Run Code Online (Sandbox Code Playgroud)
谢谢!
小智 1
这是我所做的:
include "globals.mzn";
int: N;
array[1..N, 1..N] of 0..1: adj_mat;
array[1..N] of var 0..N: path;
solve satisfy;
constraint exists_path(1,3);
N=4;
adj_mat = [|
0, 1, 0, 0,|
0, 0, 1, 0,|
0, 0, 0, 1,|
0, 0, 0, 0 |];
constraint alldifferent_except_0(path);
predicate exists_path_length(int: s, int: t, int: len) =
path[1]=s /\ path[len]=t /\ forall(i in len+1..N)(path[i]=0) /\
forall(i in 1..len-1)( adj_mat[path[i],path[i+1]]=1);
predicate exists_path(int: s, int: t) = exists(len in 2..N)(exists_path_length(s,t,len));
Run Code Online (Sandbox Code Playgroud)
注意:(1)限制路径的域很重要(在我的代码中我将其设置为 0..N),否则 MiniZinc 可能会由于大量的决策选择而永远运行。(2) 理想情况下,全局约束all different_ except_0应该放在contains_path_length内,但这样做是为了避免具体化问题(查看 MiniZinc 上的 Coursera 课程了解更多信息)。