sta*_*kit 9 python pandas graphlab sframe
如何基于给定的类\标签分布值对pandas数据帧或graphlab sframe进行采样,例如:我想对具有label\class列的数据帧进行采样,以选择行,使得每个类标签被均等地提取,从而具有相似的频率对于每个类标签,对应于类标签的均匀分布.或者最好是根据我们想要的班级分布来获取样本.
+------+-------+-------+ | col1 | clol2 | class | +------+-------+-------+ | 4 | 45 | A | +------+-------+-------+ | 5 | 66 | B | +------+-------+-------+ | 5 | 6 | C | +------+-------+-------+ | 4 | 6 | C | +------+-------+-------+ | 321 | 1 | A | +------+-------+-------+ | 32 | 432 | B | +------+-------+-------+ | 5 | 3 | B | +------+-------+-------+ given a huge dataframe like above and the required frequency distribution like below: +-------+--------------+ | class | nostoextract | +-------+--------------+ | A | 2 | +-------+--------------+ | B | 2 | +-------+--------------+ | C | 2 | +-------+--------------+
以上应基于第二帧中的给定频率分布从第一数据帧中提取行,其中频率计数值在nostoextract列中给出,以给出采样帧,其中每个类最多出现2次.如果找不到足够的课程来满足所需的数量,应该忽略并继续.结果数据帧将用于基于决策树的分类器.
正如评论员所说,采样数据帧必须包含nostoextract对应类的不同实例?除非给定类没有足够的示例,否则您只需要使用所有可用的类.
您能否将第一个数据帧拆分为特定于类的子数据帧,然后随意从中采样?
IE
dfa = df[df['class']=='A']
dfb = df[df['class']=='B']
dfc = df[df['class']=='C']
....
Run Code Online (Sandbox Code Playgroud)
然后在 dfa、dfb、dfc 上拆分/创建/过滤后,根据需要从顶部选择一个数字(如果数据帧没有任何特定的排序模式)
dfasamplefive = dfa[:5]
Run Code Online (Sandbox Code Playgroud)
或者使用前面评论者描述的sample方法直接随机抽取一个样本:
dfasamplefive = dfa.sample(n=5)
Run Code Online (Sandbox Code Playgroud)
如果这满足您的需求,剩下要做的就是自动化该过程,输入要从您拥有的控制数据帧中采样的数字,作为包含所需样本数量的第二个数据帧。
我认为这会解决你的问题:
import pandas as pd
data = pd.DataFrame({'cols1':[4, 5, 5, 4, 321, 32, 5],
'clol2':[45, 66, 6, 6, 1, 432, 3],
'class':['A', 'B', 'C', 'C', 'A', 'B', 'B']})
freq = pd.DataFrame({'class':['A', 'B', 'C'],
'nostoextract':[2, 2, 2], })
def bootstrap(data, freq):
freq = freq.set_index('class')
# This function will be applied on each group of instances of the same
# class in `data`.
def sampleClass(classgroup):
cls = classgroup['class'].iloc[0]
nDesired = freq.nostoextract[cls]
nRows = len(classgroup)
nSamples = min(nRows, nDesired)
return classgroup.sample(nSamples)
samples = data.groupby('class').apply(sampleClass)
# If you want a new index with ascending values
# samples.index = range(len(samples))
# If you want an index which is equal to the row in `data` where the sample
# came from
samples.index = samples.index.get_level_values(1)
# If you don't change it then you'll have a multiindex with level 0
# being the class and level 1 being the row in `data` where
# the sample came from.
return samples
print(bootstrap(data,freq))
Run Code Online (Sandbox Code Playgroud)
印刷:
class clol2 cols1
0 A 45 4
4 A 1 321
1 B 66 5
5 B 432 32
3 C 6 4
2 C 6 5
Run Code Online (Sandbox Code Playgroud)
如果你不希望结果按类排序,你可以最后对其进行排列。
| 归档时间: |
|
| 查看次数: |
5353 次 |
| 最近记录: |