用熊猫创建交易假期日历

vlm*_*ado 26 python calendar pandas

我正在尝试使用Pandas创建交易日历.我能够基于USFederalHolidayCalendar创建一个cal实例.USFederalHolidayCalendar与交易日历不一致,因为交易日历不包括哥伦布日和退伍军人日.但是,交易日历包括耶稣受难日(不包括在USFederalHolidayCalendar中).以下代码中除最后一行之外的所有内容都有效:

from pandas.tseries.holiday import get_calendar, HolidayCalendarFactory, GoodFriday
from datetime import datetime

cal = get_calendar('USFederalHolidayCalendar')  # Create calendar instance
cal.rules.pop(7)                                # Remove Veteran's Day rule
cal.rules.pop(6)                                # Remove Columbus Day rule
tradingCal = HolidayCalendarFactory('TradingCalendar', cal, GoodFriday)
Run Code Online (Sandbox Code Playgroud)

tradeCal实例似乎可以工作,因为我可以查看Holiday规则.

In[10]: tradingCal.rules
Out[10]: 
[Holiday: Labor Day (month=9, day=1, offset=<DateOffset: kwds={'weekday': MO(+1)}>),
 Holiday: Presidents Day (month=2, day=1, offset=<DateOffset: kwds={'weekday': MO(+3)}>),
 Holiday: Good Friday (month=1, day=1, offset=[<Easter>, <-2 * Days>]),
 Holiday: Dr. Martin Luther King Jr. (month=1, day=1, offset=<DateOffset: kwds={'weekday': MO(+3)}>),
 Holiday: New Years Day (month=1, day=1, observance=<function nearest_workday at 0x000000000A190BA8>),
 Holiday: Thanksgiving (month=11, day=1, offset=<DateOffset: kwds={'weekday': TH(+4)}>),
 Holiday: July 4th (month=7, day=4, observance=<function nearest_workday at 0x000000000A190BA8>),
 Holiday: Christmas (month=12, day=25, observance=<function nearest_workday at 0x000000000A190BA8>),
 Holiday: MemorialDay (month=5, day=31, offset=<DateOffset: kwds={'weekday': MO(-1)}>)]
Run Code Online (Sandbox Code Playgroud)

当我尝试列出日期范围内的假期时,我收到以下错误:

In[11]: tradingCal.holidays(datetime(2014, 12, 31), datetime(2016, 12, 31))
Traceback (most recent call last):
  File "C:\Python27\lib\site-packages\IPython\core\interactiveshell.py", line 3035, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)
  File "<ipython-input-12-2708cd2db7a0>", line 1, in <module>
    tradingCal.holidays(datetime(2014, 12, 31), datetime(2016, 12, 31))
TypeError: unbound method holidays() must be called with TradingCalendar instance as first argument (got datetime instance instead)
Run Code Online (Sandbox Code Playgroud)

有任何想法吗?

小智 38

也许从头开始创建交易日历更为直接,如下所示:

import datetime as dt

from pandas.tseries.holiday import AbstractHolidayCalendar, Holiday, nearest_workday, \
    USMartinLutherKingJr, USPresidentsDay, GoodFriday, USMemorialDay, \
    USLaborDay, USThanksgivingDay


class USTradingCalendar(AbstractHolidayCalendar):
    rules = [
        Holiday('NewYearsDay', month=1, day=1, observance=nearest_workday),
        USMartinLutherKingJr,
        USPresidentsDay,
        GoodFriday,
        USMemorialDay,
        Holiday('USIndependenceDay', month=7, day=4, observance=nearest_workday),
        USLaborDay,
        USThanksgivingDay,
        Holiday('Christmas', month=12, day=25, observance=nearest_workday)
    ]


def get_trading_close_holidays(year):
    inst = USTradingCalendar()

    return inst.holidays(dt.datetime(year-1, 12, 31), dt.datetime(year, 12, 31))


if __name__ == '__main__':
    print(get_trading_close_holidays(2016))
    #    DatetimeIndex(['2016-01-01', '2016-01-18', '2016-02-15', '2016-03-25',
    #                   '2016-05-30', '2016-07-04', '2016-09-05', '2016-11-24',
    #                   '2016-12-26'],
    #                  dtype='datetime64[ns]', freq=None)
Run Code Online (Sandbox Code Playgroud)


Rya*_*tel 17

如果有帮助,我对交易所交易日历也有类似的需求.Quantopian在Zipline项目中埋藏了一些优秀的代码.我提取了相关部分并创建了一个用于在熊猫中创建市场交易日历的新项目.链接在这里,具有下面描述的一些功能.

https://github.com/rsheftel/pandas_market_calendars

https://pypi.python.org/pypi/pandas-market-calendars

通过为纽约证券交易所创建所有有效营业时间的pandas DatetimeIndex,可以做到以下几点:

import pandas_market_calendars as mcal
nyse = mcal.get_calendar('NYSE')

early = nyse.schedule(start_date='2012-07-01', end_date='2012-07-10')
early

                  market_open             market_close
=========== ========================= =========================
2012-07-02 2012-07-02 13:30:00+00:00 2012-07-02 20:00:00+00:00
2012-07-03 2012-07-03 13:30:00+00:00 2012-07-03 17:00:00+00:00
2012-07-05 2012-07-05 13:30:00+00:00 2012-07-05 20:00:00+00:00
2012-07-06 2012-07-06 13:30:00+00:00 2012-07-06 20:00:00+00:00
2012-07-09 2012-07-09 13:30:00+00:00 2012-07-09 20:00:00+00:00
2012-07-10 2012-07-10 13:30:00+00:00 2012-07-10 20:00:00+00:00

mcal.date_range(early, frequency='1D')

DatetimeIndex(['2012-07-02 20:00:00+00:00', '2012-07-03 17:00:00+00:00',
               '2012-07-05 20:00:00+00:00', '2012-07-06 20:00:00+00:00',
               '2012-07-09 20:00:00+00:00', '2012-07-10 20:00:00+00:00'],
               dtype='datetime64[ns, UTC]', freq=None)

mcal.date_range(early, frequency='1H')

DatetimeIndex(['2012-07-02 14:30:00+00:00', '2012-07-02 15:30:00+00:00',
               '2012-07-02 16:30:00+00:00', '2012-07-02 17:30:00+00:00',
               '2012-07-02 18:30:00+00:00', '2012-07-02 19:30:00+00:00',
               '2012-07-02 20:00:00+00:00', '2012-07-03 14:30:00+00:00',
               '2012-07-03 15:30:00+00:00', '2012-07-03 16:30:00+00:00',
               '2012-07-03 17:00:00+00:00', '2012-07-05 14:30:00+00:00',
               '2012-07-05 15:30:00+00:00', '2012-07-05 16:30:00+00:00',
               '2012-07-05 17:30:00+00:00', '2012-07-05 18:30:00+00:00',
               '2012-07-05 19:30:00+00:00', '2012-07-05 20:00:00+00:00',
               '2012-07-06 14:30:00+00:00', '2012-07-06 15:30:00+00:00',
               '2012-07-06 16:30:00+00:00', '2012-07-06 17:30:00+00:00',
               '2012-07-06 18:30:00+00:00', '2012-07-06 19:30:00+00:00',
               '2012-07-06 20:00:00+00:00', '2012-07-09 14:30:00+00:00',
               '2012-07-09 15:30:00+00:00', '2012-07-09 16:30:00+00:00',
               '2012-07-09 17:30:00+00:00', '2012-07-09 18:30:00+00:00',
               '2012-07-09 19:30:00+00:00', '2012-07-09 20:00:00+00:00',
               '2012-07-10 14:30:00+00:00', '2012-07-10 15:30:00+00:00',
               '2012-07-10 16:30:00+00:00', '2012-07-10 17:30:00+00:00',
               '2012-07-10 18:30:00+00:00', '2012-07-10 19:30:00+00:00',
               '2012-07-10 20:00:00+00:00'],
              dtype='datetime64[ns, UTC]', freq=None)
Run Code Online (Sandbox Code Playgroud)

如果你只想获得可以在其他pandas函数中使用的pandas Holiday Calendar,它将其作为参数:

holidays = nyse.holidays()

holidays.holidays[-5:]
(numpy.datetime64('2030-05-27'),
 numpy.datetime64('2030-07-04'),
 numpy.datetime64('2030-09-02'),
 numpy.datetime64('2030-11-28'),
 numpy.datetime64('2030-12-25'))
Run Code Online (Sandbox Code Playgroud)

  • 您可能没有正确使用该包.2010-01-01以及所有其他新年和耶稣受难日均不包括在交易日内.试试上面的示例代码.如果您想学习如何使用该软件包,我建议您使用在线文档,或者如果您仍然遇到问题,可以直接给我发消息. (3认同)
  • 你是对的。我对照自 1995 年以来测试过的日历检查了它,结果是准确的。不记得我使用的什么语法给了我不想要的结果。 (2认同)

jez*_*ael 12

你必须创建类的新实例:cal1 = tradingCal().这适合我.

from pandas.tseries.holiday import get_calendar, HolidayCalendarFactory, GoodFriday
from datetime import datetime

cal = get_calendar('USFederalHolidayCalendar')  # Create calendar instance
cal.rules.pop(7)                                # Remove Veteran's Day rule
cal.rules.pop(6)                                # Remove Columbus Day rule
tradingCal = HolidayCalendarFactory('TradingCalendar', cal, GoodFriday)
print tradingCal.rules

#new instance of class
cal1 = tradingCal()

print cal1.holidays(datetime(2014, 12, 31), datetime(2016, 12, 31))

#DatetimeIndex(['2015-01-01', '2015-01-19', '2015-02-16', '2015-04-03',
#               '2015-05-25', '2015-07-03', '2015-09-07', '2015-11-26',
#               '2015-12-25', '2016-01-01', '2016-01-18', '2016-02-15',
#              '2016-03-25', '2016-05-30', '2016-07-04', '2016-09-05',
#               '2016-11-24', '2016-12-26'],
#              dtype='datetime64[ns]', freq=None, tz=None)
Run Code Online (Sandbox Code Playgroud)

  • 我认为这有一个很大的缺点!使用`.pop`会影响基础类`pandas.tseries.holiday.USFederalHolidayCalendar`,因为它是一个"就地"操作(不确定术语).这意味着如果您尝试从`get_calendar('USFederalHolidayCalendar')重新创建cal2,则规则与`cal`相同.即你没有得到'USFederalHolidayCalendar`的*clean*版本,因为它不再存在,你已经修改过了! (4认同)