场景:我的输入将是多个小型XML,并且我们希望将这些XML作为RDD读取.与另一个数据集执行连接并形成RDD并将输出作为XML发送.
是否可以使用spark读取XML,将数据加载为RDD?如果可能,将如何读取XML.
示例XML:
<root>
<users>
<user>
<account>1234<\account>
<name>name_1<\name>
<number>34233<\number>
<\user>
<user>
<account>58789<\account>
<name>name_2<\name>
<number>54697<\number>
<\user>
<\users>
<\root>
Run Code Online (Sandbox Code Playgroud)
如何将其加载到RDD中?
zer*_*323 20
是的可能,但细节会因您采取的方法而有所不同.
SparkContext.wholeTextFiles.它将数据加载RDD[(String, String)]到第一个元素是路径和第二个文件内容的位置.然后像在本地模式下一样单独解析每个文件.textinputformat.record.delimiter.你可以在这里找到一个简单的例子.输入不是XML,但您应该给出并了解如何继续XmlInputFormat最后,可以使用读取文件SparkContext.textFile,稍后调整分区之间的记录跨度.从概念上讲,它意味着类似于创建滑动窗口或将记录分区为固定大小的组:
mapPartitionsWithIndex分区来识别分区之间断开的记录,收集损坏的记录mapPartitionsWithIndex来修复损坏的记录编辑:
还有一个相对较新的spark-xml包,允许您通过标记提取特定记录:
val df = sqlContext.read
.format("com.databricks.spark.xml")
.option("rowTag", "foo")
.load("bar.xml")
Run Code Online (Sandbox Code Playgroud)
以下是执行它的方法 - >我使用HadoopInputFormats读取spark中的XML数据,如zero323所述.
输入数据 - >
<root>
<users>
<user>
<account>1234<\account>
<name>name_1<\name>
<number>34233<\number>
<\user>
<user>
<account>58789<\account>
<name>name_2<\name>
<number>54697<\number>
<\user>
<\users>
<\root>
Run Code Online (Sandbox Code Playgroud)
读取XML输入的代码 - >
你会在这个链接上得到一些罐子
//---------------spark_import
import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.sql.SQLContext
//----------------xml_loader_import
import org.apache.hadoop.io.LongWritable
import org.apache.hadoop.io.Text
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.io.{ LongWritable, Text }
import com.cloudera.datascience.common.XmlInputFormat
Run Code Online (Sandbox Code Playgroud)
输出 - >
object Tester_loader {
case class User(account: String, name: String, number: String)
def main(args: Array[String]): Unit = {
val sparkHome = "/usr/big_data_tools/spark-1.5.0-bin-hadoop2.6/"
val sparkMasterUrl = "spark://SYSTEMX:7077"
var jars = new Array[String](3)
jars(0) = "/home/hduser/Offload_Data_Warehouse_Spark.jar"
jars(1) = "/usr/big_data_tools/JARS/Spark_jar/avro/spark-avro_2.10-2.0.1.jar"
val conf = new SparkConf().setAppName("XML Reading")
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.setMaster("local")
.set("spark.cassandra.connection.host", "127.0.0.1")
.setSparkHome(sparkHome)
.set("spark.executor.memory", "512m")
.set("spark.default.deployCores", "12")
.set("spark.cores.max", "12")
.setJars(jars)
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._
// ---- loading user from XML
// calling function 1.1
val pages = readFile("src/input_data", "<user>", "<\\user>", sc)
val xmlUserDF = pages.map { tuple =>
{
val account = extractField(tuple, "account")
val name = extractField(tuple, "name")
val number = extractField(tuple, "number")
User(account, name, number)
}
}.toDF()
println(xmlUserDF.count())
xmlUserDF.show()
}
Run Code Online (Sandbox Code Playgroud)
获得的结果是在数据框中,您可以根据您的要求将它们转换为RDD,如this->
def readFile(path: String, start_tag: String, end_tag: String,
sc: SparkContext) = {
val conf = new Configuration()
conf.set(XmlInputFormat.START_TAG_KEY, start_tag)
conf.set(XmlInputFormat.END_TAG_KEY, end_tag)
val rawXmls = sc.newAPIHadoopFile(
path, classOf[XmlInputFormat], classOf[LongWritable],
classOf[Text], conf)
rawXmls.map(p => p._2.toString)
}
def extractField(tuple: String, tag: String) = {
var value = tuple.replaceAll("\n", " ").replace("<\\", "</")
if (value.contains("<" + tag + ">") &&
value.contains("</" + tag + ">")) {
value = value.split("<" + tag + ">")(1).split("</" + tag + ">")(0)
}
value
}
}
Run Code Online (Sandbox Code Playgroud)
请评估它,如果它可以帮助你如何.
这会对你有所帮助.
package packagename;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.SparkSession;
import com.databricks.spark.xml.XmlReader;
public class XmlreaderSpark {
public static void main(String arr[]){
String localxml="file path";
String booksFileTag = "user";
String warehouseLocation = "file:" + System.getProperty("user.dir") + "spark-warehouse";
System.out.println("warehouseLocation" + warehouseLocation);
SparkSession spark = SparkSession
.builder()
.master("local")
.appName("Java Spark SQL Example")
.config("spark.some.config.option", "some-value").config("spark.sql.warehouse.dir", warehouseLocation)
.enableHiveSupport().config("set spark.sql.crossJoin.enabled", "true")
.getOrCreate();
SQLContext sqlContext = new SQLContext(spark);
Dataset<Row> df = (new XmlReader()).withRowTag(booksFileTag).xmlFile(sqlContext, localxml);
df.show();
}
}
Run Code Online (Sandbox Code Playgroud)
您需要在POM.xml中添加此依赖项:
<dependency>
<groupId>com.databricks</groupId>
<artifactId>spark-xml_2.10</artifactId>
<version>0.4.0</version>
</dependency>
Run Code Online (Sandbox Code Playgroud)
并且您的输入文件格式不正确.
谢谢.
| 归档时间: |
|
| 查看次数: |
43909 次 |
| 最近记录: |