Mud*_*ogi 2 python numpy image-recognition python-2.7
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
def threshold(imageArray):
balanceAr = []
newAr = imageArray
for eachRow in imageArray:
for eachPix in eachRow:
avgNum = reduce(lambda x, y: x + y, eachPix[:3]) / len(eachPix[:3])
balanceAr.append(avgNum)
balance = reduce(lambda x, y: x + y, balanceAr) / len(balanceAr)
for eachRow in newAr:
for eachPix in eachRow:
if reduce(lambda x, y: x + y, eachPix[:3]) / len(eachPix[:3]) > balance:
eachPix[0] = 255
eachPix[1] = 255
eachPix[2] = 255
eachPix[3] = 255
else:
eachPix[0] = 0
eachPix[1] = 0
eachPix[2] = 0
eachPix[3] = 255
return newAr
i = Image.open('images/numbers/0.1.png')
iar = np.asarray(i)
3iar = threshold(iar)
i2 = Image.open('images/numbers/y0.4.png')
iar2 = np.asarray(i2)
#iar2 = threshold(iar2)
i3 = Image.open('images/numbers/y0.5.png')
iar3 = np.asarray(i3)
#iar3 = threshold(iar3)
i4 = Image.open('images/sentdex.png')
iar4 = np.asarray(i4)
#iar4 = threshold(iar4)
threshold(iar3)
fig = plt.figure()
ax1 = plt.subplot2grid((8,6), (0,0), rowspan = 4, colspan = 3)
ax2 = plt.subplot2grid((8,6), (4,0), rowspan = 4, colspan = 3)
ax3 = plt.subplot2grid((8,6), (0,3), rowspan = 4, colspan = 3)
ax4 = plt.subplot2grid((8,6), (4,3), rowspan = 4, colspan = 3)
ax1.imshow(iar)
ax2.imshow(iar2)
ax3.imshow(iar3)
ax4.imshow(iar4)
plt.show()
Run Code Online (Sandbox Code Playgroud)
我得到的错误:
Warning (from warnings module):
File "C:\WinPython-32bit-2.7.9.5\python-2.7.9\Lib\idlelib\MuditPracticals\Image_Recognition\imagerec.py", line 11
avgNum = reduce(lambda x, y: x + y, eachPix[:3]) / len(eachPix[:3])
RuntimeWarning: overflow encountered in ubyte_scalars
Warning (from warnings module):
File "C:\WinPython-32bit-2.7.9.5\python-2.7.9\Lib\idlelib\MuditPracticals\Image_Recognition\imagerec.py", line 16
if reduce(lambda x, y: x + y, eachPix[:3]) / len(eachPix[:3]) > balance:
RuntimeWarning: overflow encountered in ubyte_scalars
Traceback (most recent call last):
File "C:\WinPython-32bit-2.7.9.5\python-2.7.9\Lib\idlelib\MuditPracticals\Image_Recognition\imagerec.py", line 47, in <module>
threshold(iar3)
File "C:\WinPython-32bit-2.7.9.5\python-2.7.9\Lib\idlelib\MuditPracticals\Image_Recognition\imagerec.py", line 17, in threshold
eachPix[0] = 255
ValueError: assignment destination is read-only
Run Code Online (Sandbox Code Playgroud)
你不应该担心这些,他们基本上告诉你的是,由图像文件定义并且通常用于图像文件的uint_8(无符号整数)的范围已经超出了其可接受的范围.type numpy
从提供的链接,uint_8类型有以下范围:
无符号整数(0到255)
numpy只是发出警告,通知你溢出.值得庆幸的是,它会自动将结果调整为可接受范围的值.
例如:
from PIL import Image
import numpy as np
img = Image.open("/path/to/image.png")
img_array = np.asarray(img) # array values are of type uint_8 (!)
print img_array[0][0] # prints [ 12, 21, 56, 255]
uint8_1 = img_array[0][0][3] # = 255
uint8_2 = img_array[0][0][2] # = 56
uint8_3 = uint8_1 + uint8_2
# When executed raises a RuntimeWarning of overflow ubyte_scalars
# But! The result 'rolls over' to the acceptable range. So,
print uint8_3 # prints 55
Run Code Online (Sandbox Code Playgroud)
你的错误 ValueError: assignment destination is read-only时,实际募集分配到你的价值观numpy阵列newAr.它提供了丰富的信息,它告诉你的是阵列是read only; 内容是只读的:您可以访问它们但不能修改它们.
这样的动作:
# using img_array from previous snippet.
img_array[0][0][0] = 200
Run Code Online (Sandbox Code Playgroud)
会提出一个ValueError.
值得庆幸的是,通过为数组设置flag参数可以轻松绕过这个:
# using img_array from the previous snippet
# make it writeable
img_array.setflags(write=True)
# Values of img_array[0][0] are, as before: [ 12, 21, 56, 255]
# changing the values for your array is possible now!
img_array[0][0][0] = 200
print img_array[0][0] # prints [ 200, 21, 56, 255]
Run Code Online (Sandbox Code Playgroud)
最后说明:你总是可以抑制/忽略这些警告,即使这通常不是最好的主意.(控制台中的一些警告令人讨厌,但它们可以让您更清楚地了解事物)
为此,只需在导入numpy后添加以下内容:
import numpy as np
np.seterr(over='ignore')
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
9103 次 |
| 最近记录: |