Mer*_*moz 165 python pickle multiprocessing
当我运行类似的东西:
from multiprocessing import Pool
p = Pool(5)
def f(x):
return x*x
p.map(f, [1,2,3])
Run Code Online (Sandbox Code Playgroud)
它工作正常.但是,将此作为类的函数:
class calculate(object):
def run(self):
def f(x):
return x*x
p = Pool()
return p.map(f, [1,2,3])
cl = calculate()
print cl.run()
Run Code Online (Sandbox Code Playgroud)
给我以下错误:
Exception in thread Thread-1:
Traceback (most recent call last):
File "/sw/lib/python2.6/threading.py", line 532, in __bootstrap_inner
self.run()
File "/sw/lib/python2.6/threading.py", line 484, in run
self.__target(*self.__args, **self.__kwargs)
File "/sw/lib/python2.6/multiprocessing/pool.py", line 225, in _handle_tasks
put(task)
PicklingError: Can't pickle <type 'function'>: attribute lookup __builtin__.function failed
Run Code Online (Sandbox Code Playgroud)
我看过Alex Martelli的一篇文章处理同样的问题,但它不够明确.
kla*_* se 82
我无法使用到目前为止发布的代码,因为使用"multiprocessing.Pool"的代码不能与lambda表达式一起使用,而不使用"multiprocessing.Pool"的代码会产生与工作项一样多的进程.
我调整了代码,它产生了预定义数量的工作者,并且只有在存在空闲工作者时才迭代输入列表.我还为worker st ctrl-c启用了"守护进程"模式.
import multiprocessing
def fun(f, q_in, q_out):
while True:
i, x = q_in.get()
if i is None:
break
q_out.put((i, f(x)))
def parmap(f, X, nprocs=multiprocessing.cpu_count()):
q_in = multiprocessing.Queue(1)
q_out = multiprocessing.Queue()
proc = [multiprocessing.Process(target=fun, args=(f, q_in, q_out))
for _ in range(nprocs)]
for p in proc:
p.daemon = True
p.start()
sent = [q_in.put((i, x)) for i, x in enumerate(X)]
[q_in.put((None, None)) for _ in range(nprocs)]
res = [q_out.get() for _ in range(len(sent))]
[p.join() for p in proc]
return [x for i, x in sorted(res)]
if __name__ == '__main__':
print(parmap(lambda i: i * 2, [1, 2, 3, 4, 6, 7, 8]))
Run Code Online (Sandbox Code Playgroud)
小智 67
我也对pool.map可以接受的函数限制感到恼火.我写了以下内容以规避这一点.它似乎工作,即使是递归使用parmap.
from multiprocessing import Process, Pipe
from itertools import izip
def spawn(f):
def fun(pipe,x):
pipe.send(f(x))
pipe.close()
return fun
def parmap(f,X):
pipe=[Pipe() for x in X]
proc=[Process(target=spawn(f),args=(c,x)) for x,(p,c) in izip(X,pipe)]
[p.start() for p in proc]
[p.join() for p in proc]
return [p.recv() for (p,c) in pipe]
if __name__ == '__main__':
print parmap(lambda x:x**x,range(1,5))
Run Code Online (Sandbox Code Playgroud)
Mik*_*rns 47
除非跳到标准库之外,否则多处理和酸洗会被破坏和限制.
如果使用multiprocessing被调用的fork pathos.multiprocesssing,则可以直接在多处理map函数中使用类和类方法.这是因为dill使用而不是pickle或cPickle,并且dill可以序列化python中的几乎任何东西.
pathos.multiprocessing还提供了一个异步映射函数......它可以map使用多个参数(例如map(math.pow, [1,2,3], [4,5,6]))
请参阅讨论: 多处理和莳萝可以一起做什么?
并且:http: //matthewrocklin.com/blog/work/2013/12/05/Parallelism-and-Serialization
它甚至可以处理您最初编写的代码,无需修改,也可以处理解释器. 为什么还要做一些比单个案例更脆弱和更具体的事情呢?
>>> from pathos.multiprocessing import ProcessingPool as Pool
>>> class calculate(object):
... def run(self):
... def f(x):
... return x*x
... p = Pool()
... return p.map(f, [1,2,3])
...
>>> cl = calculate()
>>> print cl.run()
[1, 4, 9]
Run Code Online (Sandbox Code Playgroud)
获取代码:https: //github.com/uqfoundation/pathos
而且,只是为了展示它可以做的更多:
>>> from pathos.multiprocessing import ProcessingPool as Pool
>>>
>>> p = Pool(4)
>>>
>>> def add(x,y):
... return x+y
...
>>> x = [0,1,2,3]
>>> y = [4,5,6,7]
>>>
>>> p.map(add, x, y)
[4, 6, 8, 10]
>>>
>>> class Test(object):
... def plus(self, x, y):
... return x+y
...
>>> t = Test()
>>>
>>> p.map(Test.plus, [t]*4, x, y)
[4, 6, 8, 10]
>>>
>>> res = p.amap(t.plus, x, y)
>>> res.get()
[4, 6, 8, 10]
Run Code Online (Sandbox Code Playgroud)
Eri*_*got 39
据我所知,目前还没有解决您的问题的方法:您map()必须通过导入模块来访问您提供的功能.这就是罗伯特代码的工作原理:f()可以通过导入以下代码获得该函数:
def f(x):
return x*x
class Calculate(object):
def run(self):
p = Pool()
return p.map(f, [1,2,3])
if __name__ == '__main__':
cl = Calculate()
print cl.run()
Run Code Online (Sandbox Code Playgroud)
我实际上添加了一个"主要"部分,因为它遵循Windows平台的建议("确保主模块可以由新的Python解释器安全地导入而不会导致意外的副作用").
我还在前面添加了一个大写字母Calculate,以便遵循PEP 8.:)
小智 18
mrule的解决方案是正确的,但有一个错误:如果孩子发回大量数据,它可以填充管道的缓冲区,阻塞孩子的pipe.send(),而父母正在等待孩子退出pipe.join().解决方案是在孩子面前阅读孩子的数据join().此外,孩子应该关闭父管的末端以防止死锁.下面的代码修复了这个问题.另请注意,这parmap会为每个元素创建一个进程X.更先进的解决方案是使用multiprocessing.cpu_count()划分X成若干块,然后返回结果之前合并.我把它作为练习留给读者,以免破坏了mrule的好回答的简洁性.;)
from multiprocessing import Process, Pipe
from itertools import izip
def spawn(f):
def fun(ppipe, cpipe,x):
ppipe.close()
cpipe.send(f(x))
cpipe.close()
return fun
def parmap(f,X):
pipe=[Pipe() for x in X]
proc=[Process(target=spawn(f),args=(p,c,x)) for x,(p,c) in izip(X,pipe)]
[p.start() for p in proc]
ret = [p.recv() for (p,c) in pipe]
[p.join() for p in proc]
return ret
if __name__ == '__main__':
print parmap(lambda x:x**x,range(1,5))
Run Code Online (Sandbox Code Playgroud)
Bra*_*ndt 13
我也在努力解决这个问题.我将函数作为类的数据成员,作为简化示例:
from multiprocessing import Pool
import itertools
pool = Pool()
class Example(object):
def __init__(self, my_add):
self.f = my_add
def add_lists(self, list1, list2):
# Needed to do something like this (the following line won't work)
return pool.map(self.f,list1,list2)
Run Code Online (Sandbox Code Playgroud)
我需要在同一个类中的Pool.map()调用中使用self.f函数,self.f没有将元组作为参数.由于此函数嵌入在类中,因此我不清楚如何编写其他答案建议的包装类型.
我通过使用一个带有元组/列表的不同包装器解决了这个问题,其中第一个元素是函数,其余元素是该函数的参数,称为eval_func_tuple(f_args).使用它,有问题的行可以被return pool.map替换(eval_func_tuple,itertools.izip(itertools.repeat(self.f),list1,list2)).这是完整的代码:
文件:util.py
def add(a, b): return a+b
def eval_func_tuple(f_args):
"""Takes a tuple of a function and args, evaluates and returns result"""
return f_args[0](*f_args[1:])
Run Code Online (Sandbox Code Playgroud)
文件:main.py
from multiprocessing import Pool
import itertools
import util
pool = Pool()
class Example(object):
def __init__(self, my_add):
self.f = my_add
def add_lists(self, list1, list2):
# The following line will now work
return pool.map(util.eval_func_tuple,
itertools.izip(itertools.repeat(self.f), list1, list2))
if __name__ == '__main__':
myExample = Example(util.add)
list1 = [1, 2, 3]
list2 = [10, 20, 30]
print myExample.add_lists(list1, list2)
Run Code Online (Sandbox Code Playgroud)
运行main.py将给出[11,22,33].随意改进这一点,例如,也可以修改eval_func_tuple以获取关键字参数.
另一方面,在另一个答案中,对于更多进程的情况,可以使函数"parmap"更有效,而不是可用的CPU数量.我正在复制下面的编辑版本.这是我的第一篇文章,我不确定是否应该直接编辑原始答案.我还重命名了一些变量.
from multiprocessing import Process, Pipe
from itertools import izip
def spawn(f):
def fun(pipe,x):
pipe.send(f(x))
pipe.close()
return fun
def parmap(f,X):
pipe=[Pipe() for x in X]
processes=[Process(target=spawn(f),args=(c,x)) for x,(p,c) in izip(X,pipe)]
numProcesses = len(processes)
processNum = 0
outputList = []
while processNum < numProcesses:
endProcessNum = min(processNum+multiprocessing.cpu_count(), numProcesses)
for proc in processes[processNum:endProcessNum]:
proc.start()
for proc in processes[processNum:endProcessNum]:
proc.join()
for proc,c in pipe[processNum:endProcessNum]:
outputList.append(proc.recv())
processNum = endProcessNum
return outputList
if __name__ == '__main__':
print parmap(lambda x:x**x,range(1,5))
Run Code Online (Sandbox Code Playgroud)
Tor*_*xO7 11
我知道这个问题是在 8 年零 10 个月前提出的,但我想向您展示我的解决方案:
from multiprocessing import Pool
class Test:
def __init__(self):
self.main()
@staticmethod
def methodForMultiprocessing(x):
print(x*x)
def main(self):
if __name__ == "__main__":
p = Pool()
p.map(Test.methodForMultiprocessing, list(range(1, 11)))
p.close()
TestObject = Test()
Run Code Online (Sandbox Code Playgroud)
您只需要将类函数变成静态方法。但也可以使用类方法:
from multiprocessing import Pool
class Test:
def __init__(self):
self.main()
@classmethod
def methodForMultiprocessing(cls, x):
print(x*x)
def main(self):
if __name__ == "__main__":
p = Pool()
p.map(Test.methodForMultiprocessing, list(range(1, 11)))
p.close()
TestObject = Test()
Run Code Online (Sandbox Code Playgroud)
在 Python 3.7.3 中测试
在类中定义的函数(甚至在类中的函数内)并不真正发泡.但是,这有效:
def f(x):
return x*x
class calculate(object):
def run(self):
p = Pool()
return p.map(f, [1,2,3])
cl = calculate()
print cl.run()
Run Code Online (Sandbox Code Playgroud)
我接受了klaus se和aganders3的回答,并制作了一个更具可读性的文档化模块,并保存在一个文件中.您只需将其添加到项目中即可.它甚至还有一个可选的进度条!
"""
The ``processes`` module provides some convenience functions
for using parallel processes in python.
Adapted from http://stackoverflow.com/a/16071616/287297
Example usage:
print prll_map(lambda i: i * 2, [1, 2, 3, 4, 6, 7, 8], 32, verbose=True)
Comments:
"It spawns a predefined amount of workers and only iterates through the input list
if there exists an idle worker. I also enabled the "daemon" mode for the workers so
that KeyboardInterupt works as expected."
Pitfalls: all the stdouts are sent back to the parent stdout, intertwined.
Alternatively, use this fork of multiprocessing:
https://github.com/uqfoundation/multiprocess
"""
# Modules #
import multiprocessing
from tqdm import tqdm
################################################################################
def apply_function(func_to_apply, queue_in, queue_out):
while not queue_in.empty():
num, obj = queue_in.get()
queue_out.put((num, func_to_apply(obj)))
################################################################################
def prll_map(func_to_apply, items, cpus=None, verbose=False):
# Number of processes to use #
if cpus is None: cpus = min(multiprocessing.cpu_count(), 32)
# Create queues #
q_in = multiprocessing.Queue()
q_out = multiprocessing.Queue()
# Process list #
new_proc = lambda t,a: multiprocessing.Process(target=t, args=a)
processes = [new_proc(apply_function, (func_to_apply, q_in, q_out)) for x in range(cpus)]
# Put all the items (objects) in the queue #
sent = [q_in.put((i, x)) for i, x in enumerate(items)]
# Start them all #
for proc in processes:
proc.daemon = True
proc.start()
# Display progress bar or not #
if verbose:
results = [q_out.get() for x in tqdm(range(len(sent)))]
else:
results = [q_out.get() for x in range(len(sent))]
# Wait for them to finish #
for proc in processes: proc.join()
# Return results #
return [x for i, x in sorted(results)]
################################################################################
def test():
def slow_square(x):
import time
time.sleep(2)
return x**2
objs = range(20)
squares = prll_map(slow_square, objs, 4, verbose=True)
print "Result: %s" % squares
Run Code Online (Sandbox Code Playgroud)
编辑:添加了@ alexander-mcfarlane建议和测试功能
我知道这是6年前的问题,但是我只想添加我的解决方案,因为上面的一些建议看起来非常复杂,但我的解决方案实际上非常简单.
我所要做的就是将pool.map()调用包装到辅助函数中.将类对象和方法的args作为元组传递,看起来有点像这样.
def run_in_parallel(args):
return args[0].method(args[1])
myclass = MyClass()
method_args = [1,2,3,4,5,6]
args_map = [ (myclass, arg) for arg in method_args ]
pool = Pool()
pool.map(run_in_parallel, args_map)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
94497 次 |
| 最近记录: |