ver*_*men 27 c++ random stl c++11
根据以下结果,使用%操作在两个数字之间生成均匀的随机整数几乎比使用的快3倍std::uniform_int_distribution:是否有充分的理由使用std::uniform_int_distribution?
码:
#include <iostream>
#include <functional>
#include <vector>
#include <algorithm>
#include <random>
#include <cstdio>
#include <cstdlib>
using namespace std;
#define N 100000000
int main()
{
clock_t tic,toc;
for(int trials=0; trials<3; trials++)
{
cout<<"trial: "<<trials<<endl;
// uniform_int_distribution
{
int res = 0;
mt19937 gen(1);
uniform_int_distribution<int> dist(0,999);
tic = clock();
for(int i=0; i<N; i++)
{
int r = dist(gen);
res += r;
res %= 1000;
}
toc = clock();
cout << "uniform_int_distribution: "<<(float)(toc-tic)/CLOCKS_PER_SEC << endl;
cout<<res<<" "<<endl;
}
// simple modulus operation
{
int res = 0;
mt19937 gen(1);
tic = clock();
for(int i=0; i<N; i++)
{
int r = gen()%1000;
res += r;
res %= 1000;
}
toc = clock();
cout << "simple modulus operation: "<<(float)(toc-tic)/CLOCKS_PER_SEC << endl;
cout<<res<<" "<<endl;
}
cout<<endl;
}
}
Run Code Online (Sandbox Code Playgroud)
输出:
trial: 0
uniform_int_distribution: 2.90289
538
simple modulus operation: 1.0232
575
trial: 1
uniform_int_distribution: 2.86416
538
simple modulus operation: 1.01866
575
trial: 2
uniform_int_distribution: 2.94309
538
simple modulus operation: 1.01809
575
Run Code Online (Sandbox Code Playgroud)
Tem*_*Rex 40
当您使用modulo()将范围映射到另一个区间时,您将获得统计偏差.%rand()
例如,假设rand()地图统一(没有偏见)[0, 32767],你想映射到[0,4]做rand() % 5.那么值0,1和2平均将在32768次中产生6554,但是值3和4仅产生6553次(因此3*6554 + 2*6553 = 32768).
偏差很小(0.01%),但取决于您的应用可能会致命.观看Stephan T. Lavavej的谈话" rand()被认为是有害的 "了解更多细节.