Ian*_*Ian 4 opengl avfoundation ios swift
我想要来自 AVCaptureVideoDataOutput 的提要中整个图像的平均像素值,我目前正在捕捉图像并循环遍历像素以求和它们。
我想知道是否有更有效的方法来使用 GPU/openGL 来做到这一点,因为这是一个可并行化的图像处理任务。(也许是严重的高斯模糊,并读取中心像素值?)
一个特定要求是获得高精度结果,利用高水平的平均。请注意下面的 CGFloat 结果。
编辑:添加了 CIAreaAverage 的实现,如下面 Simon 的建议。它由useGPU
bool分隔。
func captureOutput(captureOutput: AVCaptureOutput!, didOutputSampleBuffer sampleBuffer: CMSampleBuffer!, fromConnection connection: AVCaptureConnection!) {
var redmean:CGFloat = 0.0;
var greenmean:CGFloat = 0.0;
var bluemean:CGFloat = 0.0;
if (useGPU) {
let pixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer)
let cameraImage = CIImage(CVPixelBuffer: pixelBuffer!)
let filter = CIFilter(name: "CIAreaAverage")
filter!.setValue(cameraImage, forKey: kCIInputImageKey)
let outputImage = filter!.valueForKey(kCIOutputImageKey) as! CIImage!
let ctx = CIContext(options:nil)
let cgImage = ctx.createCGImage(outputImage, fromRect:outputImage.extent)
let rawData:NSData = CGDataProviderCopyData(CGImageGetDataProvider(cgImage))!
let pixels = UnsafePointer<UInt8>(rawData.bytes)
let bytes = UnsafeBufferPointer<UInt8>(start:pixels, count:rawData.length)
var BGRA_index = 0
for pixel in UnsafeBufferPointer(start: bytes.baseAddress, count: bytes.count) {
switch BGRA_index {
case 0:
bluemean = CGFloat (pixel)
case 1:
greenmean = CGFloat (pixel)
case 2:
redmean = CGFloat (pixel)
case 3:
break
default:
break
}
BGRA_index++
}
} else {
let imageBuffer = CMSampleBufferGetImageBuffer(sampleBuffer)
CVPixelBufferLockBaseAddress(imageBuffer!, 0)
let baseAddress = CVPixelBufferGetBaseAddressOfPlane(imageBuffer!, 0)
let bytesPerRow = CVPixelBufferGetBytesPerRow(imageBuffer!)
let width = CVPixelBufferGetWidth(imageBuffer!)
let height = CVPixelBufferGetHeight(imageBuffer!)
let colorSpace = CGColorSpaceCreateDeviceRGB()
let bitmapInfo = CGBitmapInfo(rawValue: CGImageAlphaInfo.PremultipliedFirst.rawValue).rawValue | CGBitmapInfo.ByteOrder32Little.rawValue
let context = CGBitmapContextCreate(baseAddress, width, height, 8, bytesPerRow, colorSpace, bitmapInfo)
let imageRef = CGBitmapContextCreateImage(context)
CVPixelBufferUnlockBaseAddress(imageBuffer!, 0)
let data:NSData = CGDataProviderCopyData(CGImageGetDataProvider(imageRef))!
let pixels = UnsafePointer<UInt8>(data.bytes)
let bytes = UnsafeBufferPointer<UInt8>(start:pixels, count:data.length)
var redsum:CGFloat = 0
var greensum:CGFloat = 0
var bluesum:CGFloat = 0
var BGRA_index = 0
for pixel in UnsafeBufferPointer(start: bytes.baseAddress, count: bytes.count) {
switch BGRA_index {
case 0:
bluesum += CGFloat (pixel)
case 1:
greensum += CGFloat (pixel)
case 2:
redsum += CGFloat (pixel)
case 3:
//alphasum += UInt64(pixel)
break
default:
break
}
BGRA_index += 1
if BGRA_index == 4 { BGRA_index = 0 }
}
redmean = redsum / CGFloat(bytes.count)
greenmean = greensum / CGFloat(bytes.count)
bluemean = bluesum / CGFloat(bytes.count)
}
print("R:\(redmean) G:\(greenmean) B:\(bluemean)")
Run Code Online (Sandbox Code Playgroud)
CIAreaAverage 过滤器性能不佳的问题和原因是缺少输入范围的定义。因此,过滤器的输出与输入图像具有相同的大小,因此您可以遍历完整的图像而不是 1×1 像素的图像。因此,执行所需的时间与您的初始版本相同。
如CIAreaAverage文档中所述,您可以指定inputExtent参数。可以在类似问题的答案中找到如何快速完成此操作:
let cameraImage = CIImage(CVPixelBuffer: pixelBuffer!)
let extent = cameraImage.extent
let inputExtent = CIVector(x: extent.origin.x, y: extent.origin.y, z: extent.size.width, w: extent.size.height)
let filter = CIFilter(name: "CIAreaAverage", withInputParameters: [kCIInputImageKey: cameraImage, kCIInputExtentKey: inputExtent])!
let outputImage = filter.outputImage!
Run Code Online (Sandbox Code Playgroud)
如果你想挤出更多的性能,你可以确保你重用你的 CIContext,而不是为每个捕获的帧重新创建它。