从Spark DataFrame中删除嵌套列

Nik*_*shi 20 scala dataframe apache-spark apache-spark-sql apache-spark-ml

我有一个DataFrame架构

root
 |-- label: string (nullable = true)
 |-- features: struct (nullable = true)
 |    |-- feat1: string (nullable = true)
 |    |-- feat2: string (nullable = true)
 |    |-- feat3: string (nullable = true)
Run Code Online (Sandbox Code Playgroud)

同时,我能够使用过滤数据框

  val data = rawData
     .filter( !(rawData("features.feat1") <=> "100") )
Run Code Online (Sandbox Code Playgroud)

我无法删除列

  val data = rawData
       .drop("features.feat1")
Run Code Online (Sandbox Code Playgroud)

这是我在这里做错了吗?我也试过(不成功)做drop(rawData("features.feat1")),虽然这样做没有多大意义.

提前致谢,

尼基尔

zer*_*323 23

这只是一个编程练习,但你可以尝试这样的事情:

import org.apache.spark.sql.{DataFrame, Column}
import org.apache.spark.sql.types.{StructType, StructField}
import org.apache.spark.sql.{functions => f}
import scala.util.Try

case class DFWithDropFrom(df: DataFrame) {
  def getSourceField(source: String): Try[StructField] = {
    Try(df.schema.fields.filter(_.name == source).head)
  }

  def getType(sourceField: StructField): Try[StructType] = {
    Try(sourceField.dataType.asInstanceOf[StructType])
  }

  def genOutputCol(names: Array[String], source: String): Column = {
    f.struct(names.map(x => f.col(source).getItem(x).alias(x)): _*)
  }

  def dropFrom(source: String, toDrop: Array[String]): DataFrame = {
    getSourceField(source)
      .flatMap(getType)
      .map(_.fieldNames.diff(toDrop))
      .map(genOutputCol(_, source))
      .map(df.withColumn(source, _))
      .getOrElse(df)
  }
}
Run Code Online (Sandbox Code Playgroud)

用法示例:

scala> case class features(feat1: String, feat2: String, feat3: String)
defined class features

scala> case class record(label: String, features: features)
defined class record

scala> val df = sc.parallelize(Seq(record("a_label",  features("f1", "f2", "f3")))).toDF
df: org.apache.spark.sql.DataFrame = [label: string, features: struct<feat1:string,feat2:string,feat3:string>]

scala> DFWithDropFrom(df).dropFrom("features", Array("feat1")).show
+-------+--------+
|  label|features|
+-------+--------+
|a_label| [f2,f3]|
+-------+--------+


scala> DFWithDropFrom(df).dropFrom("foobar", Array("feat1")).show
+-------+----------+
|  label|  features|
+-------+----------+
|a_label|[f1,f2,f3]|
+-------+----------+


scala> DFWithDropFrom(df).dropFrom("features", Array("foobar")).show
+-------+----------+
|  label|  features|
+-------+----------+
|a_label|[f1,f2,f3]|
+-------+----------+
Run Code Online (Sandbox Code Playgroud)

添加一个隐式转换,你很高兴.


Mic*_*tor 15

此版本允许您删除任何级别的嵌套列:

import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.{StructType, DataType}

/**
  * Various Spark utilities and extensions of DataFrame
  */
object DataFrameUtils {

  private def dropSubColumn(col: Column, colType: DataType, fullColName: String, dropColName: String): Option[Column] = {
    if (fullColName.equals(dropColName)) {
      None
    } else {
      colType match {
        case colType: StructType =>
          if (dropColName.startsWith(s"${fullColName}.")) {
            Some(struct(
              colType.fields
                .flatMap(f =>
                  dropSubColumn(col.getField(f.name), f.dataType, s"${fullColName}.${f.name}", dropColName) match {
                    case Some(x) => Some(x.alias(f.name))
                    case None => None
                  })
                : _*))
          } else {
            Some(col)
          }
        case other => Some(col)
      }
    }
  }

  protected def dropColumn(df: DataFrame, colName: String): DataFrame = {
    df.schema.fields
      .flatMap(f => {
        if (colName.startsWith(s"${f.name}.")) {
          dropSubColumn(col(f.name), f.dataType, f.name, colName) match {
            case Some(x) => Some((f.name, x))
            case None => None
          }
        } else {
          None
        }
      })
      .foldLeft(df.drop(colName)) {
        case (df, (colName, column)) => df.withColumn(colName, column)
      }
  }

  /**
    * Extended version of DataFrame that allows to operate on nested fields
    */
  implicit class ExtendedDataFrame(df: DataFrame) extends Serializable {
    /**
      * Drops nested field from DataFrame
      *
      * @param colName Dot-separated nested field name
      */
    def dropNestedColumn(colName: String): DataFrame = {
      DataFrameUtils.dropColumn(df, colName)
    }
  }
}
Run Code Online (Sandbox Code Playgroud)

用法:

import DataFrameUtils._
df.dropNestedColumn("a.b.c.d")
Run Code Online (Sandbox Code Playgroud)


bla*_*hop 6

dropFields对于 Spark 3.1+,您可以在结构类型列上使用方法:

按名称删除 StructType 中的字段的表达式。如果架构不包含字段名称,则这是无操作。

val df = sql("SELECT named_struct('feat1', 1, 'feat2', 2, 'feat3', 3) features")

val df1 = df.withColumn("features", $"features".dropFields("feat1"))
Run Code Online (Sandbox Code Playgroud)


mme*_*tic 5

扩展 spektom 答案。支持数组类型:

object DataFrameUtils {

  private def dropSubColumn(col: Column, colType: DataType, fullColName: String, dropColName: String): Option[Column] = {
    if (fullColName.equals(dropColName)) {
      None
    } else if (dropColName.startsWith(s"$fullColName.")) {
      colType match {
        case colType: StructType =>
          Some(struct(
            colType.fields
              .flatMap(f =>
                dropSubColumn(col.getField(f.name), f.dataType, s"$fullColName.${f.name}", dropColName) match {
                  case Some(x) => Some(x.alias(f.name))
                  case None => None
                })
              : _*))
        case colType: ArrayType =>
          colType.elementType match {
            case innerType: StructType =>
              Some(struct(innerType.fields
                .flatMap(f =>
                  dropSubColumn(col.getField(f.name), f.dataType, s"$fullColName.${f.name}", dropColName) match {
                    case Some(x) => Some(x.alias(f.name))
                    case None => None
                  })
                : _*))
          }

        case other => Some(col)
      }
    } else {
      Some(col)
    }
  }

  protected def dropColumn(df: DataFrame, colName: String): DataFrame = {
    df.schema.fields
      .flatMap(f => {
        if (colName.startsWith(s"${f.name}.")) {
          dropSubColumn(col(f.name), f.dataType, f.name, colName) match {
            case Some(x) => Some((f.name, x))
            case None => None
          }
        } else {
          None
        }
      })
      .foldLeft(df.drop(colName)) {
        case (df, (colName, column)) => df.withColumn(colName, column)
      }
  }

  /**
    * Extended version of DataFrame that allows to operate on nested fields
    */
  implicit class ExtendedDataFrame(df: DataFrame) extends Serializable {
    /**
      * Drops nested field from DataFrame
      *
      * @param colName Dot-separated nested field name
      */
    def dropNestedColumn(colName: String): DataFrame = {
      DataFrameUtils.dropColumn(df, colName)
    }
  }

}
Run Code Online (Sandbox Code Playgroud)


Jef*_*ans 5

我将在这里扩展 mmendez.semantic 的答案,并解释子线程中描述的问题。

  def dropSubColumn(col: Column, colType: DataType, fullColName: String, dropColName: String): Option[Column] = {
    if (fullColName.equals(dropColName)) {
      None
    } else if (dropColName.startsWith(s"$fullColName.")) {
      colType match {
        case colType: StructType =>
          Some(struct(
            colType.fields
                .flatMap(f =>
                  dropSubColumn(col.getField(f.name), f.dataType, s"$fullColName.${f.name}", dropColName) match {
                    case Some(x) => Some(x.alias(f.name))
                    case None => None
                  })
                : _*))
        case colType: ArrayType =>
          colType.elementType match {
            case innerType: StructType =>
              // we are potentially dropping a column from within a struct, that is itself inside an array
              // Spark has some very strange behavior in this case, which they insist is not a bug
              // see https://issues.apache.org/jira/browse/SPARK-31779 and associated comments
              // and also the thread here: /sf/answers/2796066871/
              // this is a workaround for that behavior

              // first, get all struct fields
              val innerFields = innerType.fields
              // next, create a new type for all the struct fields EXCEPT the column that is to be dropped
              // we will need this later
              val preserveNamesStruct = ArrayType(StructType(
                innerFields.filterNot(f => s"$fullColName.${f.name}".equals(dropColName))
              ))
              // next, apply dropSubColumn recursively to build up the new values after dropping the column
              val filteredInnerFields = innerFields.flatMap(f =>
                dropSubColumn(col.getField(f.name), f.dataType, s"$fullColName.${f.name}", dropColName) match {
                    case Some(x) => Some(x.alias(f.name))
                    case None => None
                }
              )
              // finally, use arrays_zip to unwrap the arrays that were introduced by building up the new. filtered
              // struct in this way (see comments in SPARK-31779), and then cast to the StructType we created earlier
              // to get the original names back
              Some(arrays_zip(filteredInnerFields:_*).cast(preserveNamesStruct))
          }

        case _ => Some(col)
      }
    } else {
      Some(col)
    }
  }

  def dropColumn(df: DataFrame, colName: String): DataFrame = {
    df.schema.fields.flatMap(f => {
      if (colName.startsWith(s"${f.name}.")) {
        dropSubColumn(col(f.name), f.dataType, f.name, colName) match {
          case Some(x) => Some((f.name, x))
          case None => None
        }
      } else {
        None
      }
    }).foldLeft(df.drop(colName)) {
      case (df, (colName, column)) => df.withColumn(colName, column)
    }
  }
Run Code Online (Sandbox Code Playgroud)

用途spark-shell

// if defining the functions above in your spark-shell session, you first need imports
import org.apache.spark.sql._
import org.apache.spark.sql.types._

// now you can paste the function definitions

// create a deeply nested and complex JSON structure    
val jsonData = """{
      "foo": "bar",
      "top": {
        "child1": 5,
        "child2": [
          {
            "child2First": "one",
            "child2Second": 2,
            "child2Third": -19.51
          }
        ],
        "child3": ["foo", "bar", "baz"],
        "child4": [
          {
            "child2First": "two",
            "child2Second": 3,
            "child2Third": 16.78
          }
        ]
      }
    }"""

// read it into a DataFrame
val df = spark.read.option("multiline", "true").json(Seq(jsonData).toDS())

// remove a sub-column
val modifiedDf = dropColumn(df, "top.child2.child2First")

modifiedDf.printSchema
root
 |-- foo: string (nullable = true)
 |-- top: struct (nullable = false)
 |    |-- child1: long (nullable = true)
 |    |-- child2: array (nullable = true)
 |    |    |-- element: struct (containsNull = true)
 |    |    |    |-- child2Second: long (nullable = true)
 |    |    |    |-- child2Third: double (nullable = true)
 |    |-- child3: array (nullable = true)
 |    |    |-- element: string (containsNull = true)
 |    |-- child4: array (nullable = true)
 |    |    |-- element: struct (containsNull = true)
 |    |    |    |-- child2First: string (nullable = true)
 |    |    |    |-- child2Second: long (nullable = true)
 |    |    |    |-- child2Third: double (nullable = true)


modifiedDf.show(truncate=false)
+---+------------------------------------------------------+
|foo|top                                                   |
+---+------------------------------------------------------+
|bar|[5, [[2, -19.51]], [foo, bar, baz], [[two, 3, 16.78]]]|
+---+------------------------------------------------------+
Run Code Online (Sandbox Code Playgroud)