Scala - 计算交错数组总和的惯用方法?

I82*_*uch 9 functional-programming scala

我正在尝试计算Scala中图像的平均颜色,其中"average"被定义为redSum/numpixels,greenSum/numpixels,blueSum/numpixels.

这是我用来计算图像矩形区域(Raster)中的平均颜色的代码.

// A raster is an abstraction of a piece of an image and the underlying
// pixel data.
// For instance, we can get a raster than is of the upper left twenty
// pixel square of an image
def calculateColorFromRaster(raster:Raster): Color = {
  var redSum = 0
  var greenSum = 0
  var blueSum = 0

  val minX = raster.getMinX()
  val minY = raster.getMinY()

  val height = raster.getHeight()
  val width = raster.getWidth()
  val numPixels = height * width

  val numChannels = raster.getNumBands() 

  val pixelBuffer = new Array[Int](width*height*numChannels)
  val pixels = raster.getPixels(minX,minY,width,height,pixelBuffer)

  // pixelBuffer now filled with r1,g1,b1,r2,g2,b2,...
  // If there's an alpha channel, it will be r1,g1,b1,a1,r2,... but we skip the alpha
  for (i <- 0 until numPixels) {
    val redOffset = numChannels * i
    val red = pixels(redOffset)
    val green = pixels(redOffset+1)
    val blue = pixels(redOffset+2)

    redSum+=red
    greenSum+=green
    blueSum+=blue
  }
  new Color(redSum / numPixels, greenSum / numPixels, blueSum / numPixels)
}
Run Code Online (Sandbox Code Playgroud)

是否有更惯用的Scala方法总结不同的交错数组?某种方法可以在数组上进行投影,迭代每个第4个元素?我对Stack Overflow社区可以提供的任何专业知识感兴趣.

Ale*_*nov 10

pixels.grouped(3)将返回一个Iterator[Array[Int]]3元素数组.所以

val pixelRGBs = pixels.grouped(3)

val (redSum, greenSum, blueSum) = 
  pixelRGBs.foldLeft((0, 0, 0)) {case ((rSum, gSum, bSum), Array(r, g, b)) => (rSum + r, gSum + g, bSum + b)}

new Color(redSum / numPixels, greenSum / numPixels, blueSum / numPixels)
Run Code Online (Sandbox Code Playgroud)

更新:要处理3和4通道,我会写

pixels.grouped(numChannels).foldLeft((0, 0, 0)) {case ((rSum, gSum, bSum), Array(r, g, b, _*)) => (rSum + r, gSum + g, bSum + b)}
Run Code Online (Sandbox Code Playgroud)

_*这里基本上是指"0或更多元素".请参阅http://programming-scala.labs.oreilly.com/ch03.html中的 "序列匹配"


Dav*_*ith 6

对于这个问题,这是疯狂的过度杀伤,但是我对数据集进行了大量的分区缩减,并为它构建了一些实用功能.其中最常见的是reduceBy,它采用集合(实际上是Traversable),分区函数,映射函数和简化函数,并生成从分区到缩减/映射值的映射.

  def reduceBy[A, B, C](t: Traversable[A], f: A => B, g: A => C, reducer: (C, C) => C): Map[B, C] = {
    def reduceInto(map: Map[B, C], key: B, value: C): Map[B, C] =
      if (map.contains(key)) {
        map + (key -> reducer(map(key), value))
      }
      else {
        map + (key -> value)
      }
    t.foldLeft(Map.empty[B, C])((m, x) => reduceInto(m, f(x), g(x)))
  }
Run Code Online (Sandbox Code Playgroud)

鉴于重型机械,你的问题就变成了

val sumByColor:Map[Int, Int] = reduceBy(1 until numPixels, (i => i%numChannels), (i=>pixel(i)), (_+_))
return Color(sumByColor(0)/numPixels, sumByColor(1)/numPixels, sumByColor(2)/numPixels)
Run Code Online (Sandbox Code Playgroud)

在高阶编程的强大功能之前静音.