Arm*_*man 7 java algorithm primes sieve-of-eratosthenes
目前我有这个素数发生器,限制在n <2 ^ 32-1.鉴于数组中元素的限制,我不完全确定如何进一步扩展限制.
筛:
public class Main {
public static void main(String args[]){
long N = 2000000000;
// initially assume all integers are prime
boolean[] isPrime = new boolean[N + 1];
for (int i = 2; i <= N; i++) {
isPrime[i] = true;
}
// mark non-primes <= N using Sieve of Eratosthenes
for (int i = 2; i*i <= N; i++) {
// if i is prime, then mark multiples of i as nonprime
// suffices to consider mutiples i, i+1, ..., N/i
if (isPrime[i]) {
for (int j = i; i*j <= N; j++) {
isPrime[i*j] = false;
}
}
}
}
}
Run Code Online (Sandbox Code Playgroud)
我怎么能修改这个以超过n = 2 ^ 32-1?
您可以使用对象数组BitSet
来表示长位集。这是完整的示例:
public class Main {
private static class LongBitSet {
// max value stored in single BitSet
private static final int BITSET_SIZE = 1 << 30;
BitSet[] bitsets;
public LongBitSet(long limit) {
bitsets = new BitSet[(int) (limit/BITSET_SIZE+1)];
// set all bits by default
for(int i=0; i<bitsets.length; i++) {
bitsets[i] = new BitSet();
int max = (int) (i == bitsets.length-1 ?
limit % BITSET_SIZE : BITSET_SIZE);
bitsets[i].set(0, max);
}
}
// clear specified bit
public void clear(long pos) {
bitsets[(int) (pos / BITSET_SIZE)].clear((int) (pos % BITSET_SIZE));
}
// get the value of the specified bit
public boolean get(long pos) {
return bitsets[(int) (pos / BITSET_SIZE)].get((int) (pos % BITSET_SIZE));
}
// get the number of set bits
public long cardinality() {
long cardinality = 0;
for(BitSet bs : bitsets) {
cardinality += bs.cardinality();
}
return cardinality;
}
}
public static void main(String args[]) {
long N = 4000000000L;
// initially assume all integers are prime
LongBitSet bs = new LongBitSet(N+1);
// clear 0 and 1: non-primes
bs.clear(0);
bs.clear(1);
// mark non-primes <= N using Sieve of Eratosthenes
for (long i = 2; i * i <= N; i++) {
if (bs.get(i)) {
for (long j = i; i * j <= N; j++) {
bs.clear(i * j);
}
}
}
System.out.println(bs.cardinality());
}
}
Run Code Online (Sandbox Code Playgroud)
该程序需要N = 4_000_000_000L
大约 512Mb 的内存,运行几分钟并根据 Wolfram Alpha189961812
打印出低于 40 亿的正确素数数量。如果你有足够的RAM,你可以尝试设置更大的N。