pandas groupby可以将DataFrame转换为系列吗?

mwa*_*kom 5 python pandas statsmodels

我想使用pandas和statsmodels在数据帧的子集上拟合线性模型并返回预测值.但是,我无法弄清楚使用正确的熊猫成语.这是我想要做的:

import pandas as pd
import statsmodels.formula.api as sm
import seaborn as sns

tips = sns.load_dataset("tips")
def fit_predict(df):
    m = sm.ols("tip ~ total_bill", df).fit()
    return pd.Series(m.predict(df), index=df.index)
tips["predicted_tip"] = tips.groupby("day").transform(fit_predict)
Run Code Online (Sandbox Code Playgroud)

这会引发以下错误:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-139-b3d2575e2def> in <module>()
----> 1 tips["predicted_tip"] = tips.groupby("day").transform(fit_predict)

/Users/mwaskom/anaconda/lib/python2.7/site-packages/pandas/core/groupby.pyc in transform(self, func, *args, **kwargs)
   3033                     return self._transform_general(func, *args, **kwargs)
   3034         except:
-> 3035             return self._transform_general(func, *args, **kwargs)
   3036 
   3037         # a reduction transform

/Users/mwaskom/anaconda/lib/python2.7/site-packages/pandas/core/groupby.pyc in _transform_general(self, func, *args, **kwargs)
   2988                     group.T.values[:] = res
   2989                 else:
-> 2990                     group.values[:] = res
   2991 
   2992                 applied.append(group)

ValueError: could not broadcast input array from shape (62) into shape (62,6)
Run Code Online (Sandbox Code Playgroud)

该错误是有道理的,因为我认为.transform想要将DataFrame映射到DataFrame.但是有没有办法在DataFrame上进行groupby操作,将每个块传递给一个函数,将其缩减为一个Series(具有相同的索引),然后将得到的Series组合成可插入原始数据帧的东西?

Joh*_*hnE 2

这里的顶部部分是相同的,我只是使用一个玩具数据集 b/c 我位于防火墙后面。

tips = pd.DataFrame({ 'day':list('MMMFFF'), 'tip':range(6), 
                      'total_bill':[10,40,20,80,50,40] })

def fit_predict(df):
    m = sm.ols("tip ~ total_bill", df).fit()
    return pd.Series(m.predict(df), index=df.index)
Run Code Online (Sandbox Code Playgroud)

如果将“转换”更改为“应用”,您将得到:

tips.groupby("day").apply(fit_predict)

day   
F    3    2.923077
     4    4.307692
     5    4.769231
M    0    0.714286
     1    1.357143
     2    0.928571
Run Code Online (Sandbox Code Playgroud)

这并不完全是您想要的,但如果您将 level=0 删除,您可以根据需要继续:

tips['predicted'] = tips.groupby("day").apply(fit_predict).reset_index(level=0,drop=True)

  day  tip  total_bill  predicted
0   M    0          10   0.714286
1   M    1          40   1.357143
2   M    2          20   0.928571
3   F    3          80   2.923077
4   F    4          50   4.307692
5   F    5          40   4.769231
Run Code Online (Sandbox Code Playgroud)