Pek*_*kka 22 python join pandas
和这个python pandas一样:如何在一个数据帧中找到行但在另一个数据帧中找不到? 但有多列
这是设置:
import pandas as pd
df = pd.DataFrame(dict(
col1=[0,1,1,2],
col2=['a','b','c','b'],
extra_col=['this','is','just','something']
))
other = pd.DataFrame(dict(
col1=[1,2],
col2=['b','c']
))
Run Code Online (Sandbox Code Playgroud)
现在,我想选择其他行中df不存在的行.我想用col1和做选择col2
在SQL中我会这样做:
select * from df
where not exists (
select * from other o
where df.col1 = o.col1 and
df.col2 = o.col2
)
Run Code Online (Sandbox Code Playgroud)
在熊猫我可以做这样的事情,但感觉非常难看.如果df具有id-column,则可以避免部分丑陋,但并不总是可用.
key_col = ['col1','col2']
df_with_idx = df.reset_index()
common = pd.merge(df_with_idx,other,on=key_col)['index']
mask = df_with_idx['index'].isin(common)
desired_result = df_with_idx[~mask].drop('index',axis=1)
Run Code Online (Sandbox Code Playgroud)
那么也许有一些更优雅的方式?
EdC*_*ica 29
由于0.17.0有一个新的indicator参数,您可以传递给merge它,它将告诉您行是仅出现在左侧,右侧还是两侧:
In [5]:
merged = df.merge(other, how='left', indicator=True)
merged
Out[5]:
col1 col2 extra_col _merge
0 0 a this left_only
1 1 b is both
2 1 c just left_only
3 2 b something left_only
In [6]:
merged[merged['_merge']=='left_only']
Out[6]:
col1 col2 extra_col _merge
0 0 a this left_only
2 1 c just left_only
3 2 b something left_only
Run Code Online (Sandbox Code Playgroud)
因此,您现在可以通过仅选择'left_only'行来过滤合并的df
有趣的
cols = ['col1','col2']
#get copies where the indeces are the columns of interest
df2 = df.set_index(cols)
other2 = other.set_index(cols)
#Look for index overlap, ~
df[~df2.index.isin(other2.index)]
Run Code Online (Sandbox Code Playgroud)
返回:
col1 col2 extra_col
0 0 a this
2 1 c just
3 2 b something
Run Code Online (Sandbox Code Playgroud)
看起来更优雅一点...
| 归档时间: |
|
| 查看次数: |
16635 次 |
| 最近记录: |