Lac*_*ith 5 python arrays performance numpy vectorization
我有一个看起来如下的numpy操作:
for i in range(i_max):
for j in range(j_max):
r[i, j, x[i, j], y[i, j]] = c[i, j]
Run Code Online (Sandbox Code Playgroud)
在哪里x,y并c具有相同的形状.
是否可以使用numpy的高级索引来加速此操作?
我试过用:
i = numpy.arange(i_max)
j = numpy.arange(j_max)
r[i, j, x, y] = c
Run Code Online (Sandbox Code Playgroud)
但是,我没有得到我预期的结果.
d0,d1,d2,d3 = r.shape
np.put(r,np.arange(i_max)[:,None]*d1*d2*d3 + np.arange(j_max)*d2*d3 + x*d3 +y,c)
Run Code Online (Sandbox Code Playgroud)
基准和验证
定义功能 -
def linear_indx(r,x,y,c,i_max,j_max):
d0,d1,d2,d3 = r.shape
np.put(r,np.arange(i_max)[:,None]*d1*d2*d3 + np.arange(j_max)*d2*d3 + x*d3 +y,c)
return r
def org_app(r,x,y,c,i_max,j_max):
for i in range(i_max):
for j in range(j_max):
r[i, j, x[i,j], y[i,j]] = c[i,j]
return r
Run Code Online (Sandbox Code Playgroud)
设置输入数组和基准 -
In [134]: # Setup input arrays
...: i_max = 40
...: j_max = 50
...: D0 = 60
...: D1 = 70
...: N = 80
...:
...: r = np.zeros((D0,D1,N,N))
...: c = np.random.rand(i_max,j_max)
...:
...: x = np.random.randint(0,N,(i_max,j_max))
...: y = np.random.randint(0,N,(i_max,j_max))
...:
In [135]: # Make copies for testing, as both functions make in-situ changes
...: r1 = r.copy()
...: r2 = r.copy()
...:
In [136]: # Verify results by comparing with original loopy approach
...: np.allclose(linear_indx(r1,x,y,c,i_max,j_max),org_app(r2,x,y,c,i_max,j_max))
Out[136]: True
In [137]: # Make copies for testing, as both functions make in-situ changes
...: r1 = r.copy()
...: r2 = r.copy()
...:
In [138]: %timeit linear_indx(r1,x,y,c,i_max,j_max)
10000 loops, best of 3: 115 µs per loop
In [139]: %timeit org_app(r2,x,y,c,i_max,j_max)
100 loops, best of 3: 2.25 ms per loop
Run Code Online (Sandbox Code Playgroud)
小智 4
索引数组需要是可广播的才能起作用。唯一需要的更改是向第一个索引添加一个轴,i以使形状与其余索引相匹配。完成此操作的快速方法是使用索引None(相当于numpy.newaxis):
i = numpy.arange(i_max)
j = numpy.arange(j_max)
r[i[:,None], j, x, y] = c
Run Code Online (Sandbox Code Playgroud)