Mar*_*ius 2 row r count matrix
我希望这不是一个重复的问题(尽我所能,看看它是否已被问到).我有一个数据框,想要计算有多少行相同.
df = data.frame(ID = c("id1", "id2", "id3", "id4", "id5", "id6", "id7", "id8", "id9"),
Val1 = c("A", "B", "C", "A", "A", "B", "D", "C", "D"),
Val2 = c("B", "C", NA, "B", "B", "D", "E", "D", "E"),
Val3 = c("C", NA, NA, "C", "C", "B", NA, NA,NA),
Val4 = c("D", NA, NA, "E", "D", NA, NA, NA, NA))
> df
ID Val1 Val2 Val3 Val4
1 id1 A B C D
2 id2 B C <NA> <NA>
3 id3 C <NA> <NA> <NA>
4 id4 A B C E
5 id5 A B C D
6 id6 B D B <NA>
7 id7 D E <NA> <NA>
8 id8 C D <NA> <NA>
9 id9 D E <NA> <NA>
Run Code Online (Sandbox Code Playgroud)
所以,在这个例子中我期望的回报是A B C D 2
,D E 2
,B C <NA> <NA> 1
等..试过table
,但我得到了Error in table(type_table) : attempt to make a table with >= 2^31 elements
我的DF的"唯一"〜140K行.我想在更大的数据集上应用它.尝试summarise
也可能但我可能不知道如何正确应用它.是aggregate
一种选择吗?谢谢
之所以table
不起作用是因为它分别处理每个列并尝试按元素组合而不是按行组合查找.
您可以尝试使用该do.call(paste(
组合,以便按行粘贴元素并table
在其上运行
table(do.call(paste, df[-1]))
# A B C D A B C E B C NA NA B D B NA C D NA NA C NA NA NA D E NA NA
# 2 1 1 1 1 1 2
Run Code Online (Sandbox Code Playgroud)
如果table
没有足够的效率,我们可以尝试.N
从data.table
替代
library(data.table)
setDT(df)[, .N, by = c(names(df)[-1])]
# Val1 Val2 Val3 Val4 N
# 1: A B C D 2
# 2: B C NA NA 1
# 3: C NA NA NA 1
# 4: A B C E 1
# 5: B D B NA 1
# 6: D E NA NA 2
# 7: C D NA NA 1
Run Code Online (Sandbox Code Playgroud)