Ste*_*van 7 python arrays filtering signal-processing numpy
我是python的新手,我正在尝试做一些基本的信号处理工作,而且我遇到了严重的性能问题.以矢量化方式执行此操作是否存在python技巧?基本上我正在尝试实现一阶滤波器,但滤波器特性可能会从一个样本变为另一个样本.如果它只是一个过滤器我会使用numpy.signal.lfilter(),但它有点棘手.这里的代码片段非常缓慢:
#filter state
state = 0
#perform filtering
for sample in amplitude:
if( sample == 1.0 ): #attack filter
sample = (1.0 - att_coeff) * sample + att_coeff * state
else: #release filter
sample = (1.0 - rel_coeff) * sample + rel_coeff * state
state = sample
Run Code Online (Sandbox Code Playgroud)
您可以考虑使用Python到本机代码转换器之一,例如Cython,Numba 或Pythran.
例如,使用timeit运行原始代码可以让我:
$ python -m timeit -s 'from co import co; import numpy as np; a = np.random.random(100000)' 'co(a, .5, .7)'
10 loops, best of 3: 120 msec per loop
Run Code Online (Sandbox Code Playgroud)
用Pythran注释它,如:
#pythran export co(float[], float, float)
def co(amplitude, att_coeff, rel_coeff):
# filter state
state = 0
# perform filtering
for sample in amplitude:
if sample == 1.0: # attack filter
state = (1.0 - att_coeff) * sample + att_coeff * state
else: # release filter
state = (1.0 - rel_coeff) * sample + rel_coeff * state
return state
Run Code Online (Sandbox Code Playgroud)
并用它编译
$ pythran co.py
Run Code Online (Sandbox Code Playgroud)
给我:
$ python -m timeit -s 'from co import co; import numpy as np; a = np.random.random(100000)' 'co(a, .5, .7)'
1000 loops, best of 3: 253 usec per loop
Run Code Online (Sandbox Code Playgroud)
这大约是x470加速!我希望Numba和Cython能够提供类似的加速.