rec*_*uze 3 python bayesian pymc pymc3
我有一个在pymc3中描述的模型,使用以下内容:
from pymc3 import *
basic_model = Model()
with basic_model:
# Priors for unknown model parameters
alpha = Normal('alpha', mu=0, sd=10)
beta = Normal('beta', mu=0, sd=10, shape=18)
sigma = HalfNormal('sigma', sd=1)
# Expected value of outcome
mu = alpha + beta[0]*X1 + beta[1]*X2 + beta[2]*X3
# Likelihood (sampling distribution) of observations
Y_obs = Normal('Y_obs', mu=mu, sd=sigma, observed=Y)
Run Code Online (Sandbox Code Playgroud)
但是,我的Ys不是正常分布的,而是二进制的(所以,伯努利,我认为).我无法弄清楚如何改变NormalY的分布,Bernoulli因为我无法弄清楚Y_obs在这种情况下params会是什么.
小智 5
您正在寻找的是逻辑回归.在这里,您使用逻辑函数将线性模型的输出转换为概率.
在您的示例中,可以指定如下:
from pymc3 import *
import theano.tensor as T
basic_model = Model()
def logistic(l):
return 1 / (1 + T.exp(-l))
with basic_model:
# Priors for unknown model parameters
alpha = Normal('alpha', mu=0, sd=10)
beta = Normal('beta', mu=0, sd=10, shape=18)
# Expected value of outcome
mu = alpha + beta[0]*X1 + beta[1]*X2 + beta[2]*X3
# Likelihood (sampling distribution) of observations
Y_obs = Bernoulli('Y_obs', p=logistic(mu), observed=Y)
Run Code Online (Sandbox Code Playgroud)