fob*_*122 0 python random-forest apache-spark apache-spark-mllib
我正在尝试运行 MLLIB 的随机森林模型,但遇到一些越界异常:
15/09/15 01:53:56 INFO scheduler.DAGScheduler: ResultStage 5 (collect at DecisionTree.scala:977) finished in 0.147 s
15/09/15 01:53:56 INFO scheduler.DAGScheduler: Job 5 finished: collect at DecisionTree.scala:977, took 0.161129 s
15/09/15 01:53:57 INFO rdd.MapPartitionsRDD: Removing RDD 4 from persistence list
15/09/15 01:53:57 INFO storage.BlockManager: Removing RDD 4
Traceback (most recent call last):
File "/root/random_forest/random_forest_spark.py", line 142, in <module>
main()
File "/root/random_forest/random_forest_spark.py", line 121, in main
trainModel(dset)
File "/root/random_forest/random_forest_spark.py", line 136, in trainModel
impurity='gini', maxDepth=4, maxBins=32)
File "/root/spark/python/lib/pyspark.zip/pyspark/mllib/tree.py", line 352, in trainClassifier
File "/root/spark/python/lib/pyspark.zip/pyspark/mllib/tree.py", line 270, in _train
File "/root/spark/python/lib/pyspark.zip/pyspark/mllib/common.py", line 128, in callMLlibFunc
File "/root/spark/python/lib/pyspark.zip/pyspark/mllib/common.py", line 121, in callJavaFunc
File "/root/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py", line 538, in __call__
File "/root/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py", line 300, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o47.trainRandomForestModel.
: java.lang.IndexOutOfBoundsException: 1337 not in [0,1337)
at breeze.linalg.SparseVector$mcD$sp.apply$mcD$sp(SparseVector.scala:74)
at breeze.linalg.SparseVector$mcD$sp.apply(SparseVector.scala:73)
at breeze.linalg.SparseVector$mcD$sp.apply(SparseVector.scala:49)
at breeze.linalg.TensorLike$class.apply$mcID$sp(Tensor.scala:94)
at breeze.linalg.SparseVector.apply$mcID$sp(SparseVector.scala:49)
at org.apache.spark.mllib.linalg.Vector$class.apply(Vectors.scala:102)
at org.apache.spark.mllib.linalg.SparseVector.apply(Vectors.scala:636)
at org.apache.spark.mllib.tree.DecisionTree$$anonfun$26.apply(DecisionTree.scala:992)
at org.apache.spark.mllib.tree.DecisionTree$$anonfun$26.apply(DecisionTree.scala:992)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:108)
at org.apache.spark.mllib.tree.DecisionTree$.findSplitsBins(DecisionTree.scala:992)
at org.apache.spark.mllib.tree.RandomForest.run(RandomForest.scala:151)
at org.apache.spark.mllib.tree.RandomForest$.trainClassifier(RandomForest.scala:289)
at org.apache.spark.mllib.api.python.PythonMLLibAPI.trainRandomForestModel(PythonMLLibAPI.scala:666)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:379)
at py4j.Gateway.invoke(Gateway.java:259)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:207)
at java.lang.Thread.run(Thread.java:745)
Run Code Online (Sandbox Code Playgroud)
我使用data/mllib/sample_libsvm_data.txt运行了示例 python 代码,该代码运行正确。但是,当我使用自己的 RDD 时,我收到上述错误。我的 RDD 条目的格式是来自 mllib 的 LabeledPoint,而每个标记点的索引由 mllib SparseVector 描述。我正在从 numpy csr 矩阵加载稀疏向量的数据。
我并没有真正看到示例加载的数据和我自己的数据有多大区别。但我确实注意到该错误似乎总是在我的 RDD 的最后一个元素上调用。
编辑: 在随机森林上训练的数据的示例测试用例产生以下错误:
py4j.protocol.Py4JJavaError: An error occurred while calling o46.trainRandomForestModel.
: java.lang.IndexOutOfBoundsException: 1071 not in [0,1071)
Run Code Online (Sandbox Code Playgroud)
然后我尝试使用以下内容更多地查看我的数据:
>>> dset = data.collect()
>>> dset[-1].features.size
1721
Run Code Online (Sandbox Code Playgroud)
每个条目都是以下类型:
>>> type(dset[-1].features)
<class 'pyspark.mllib.linalg.SparseVector'>
Run Code Online (Sandbox Code Playgroud)
的输出dset[-1]具有以下形式:
LabeledPoint(0.0, (2286,[44673,64508,65588,122081,306819,306820,382530,401432,465330,465336,505179,512444,512605,517844,526648,595536,595540,615236,628547,629226,810553,938019,1044478,1232743,... ... ...],[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,... ... .. ]))
Run Code Online (Sandbox Code Playgroud)
请注意,特征数量的大小与错误消息的索引相同。
我找到了出现这些错误的原因,因此我将其发布在这里,以防其他人也遇到这种情况。
tl;dr 我为 SparseVector 的大小存储了错误的值。
我的 MLLIB 的 LabeledPoint 对象实例包含label和features,其中features应该是 SparseVector 对象。这个稀疏对象是使用 声明的SparseVector(vector_size, nonzero_indices, data)。
但是,我不小心将非零值的数量用作vector_size。这可以在我的示例 LabeledPoint 输出中看到LabeledPoint(0.0, (2286,[44673,64508, ...
在这里我们可以看到我声明了我的大小为 2286,但是即使我的第一个索引(44673)也大于我声明的数组大小,这让我很头痛。
将 2286 更改为正确的真正非稀疏数组大小解决了问题