在 Python 3.4 中使用多处理时出现断言错误

Dav*_*man 3 python parallel-processing multiprocessing

我对 Python 很陌生,对并行处理也完全陌生。

我一直在编写代码来分析点状图像数据(想想PALM lite),并尝试使用该模块加速我的分析代码multiprocessing

对于小数据集,我发现最多四个核心的加速效果相当不错。对于大型数据集,我开始收到断言错误。我尝试制作一个产生相同错误的简化示例,请参见下文:

import numpy as np
import multiprocessing as mp
import os

class TestClass(object):
    def __init__(self, data):
        super().__init__()
        self.data = data

    def top_level_function(self, nproc = 1):

        if nproc > os.cpu_count():
            nproc = os.cpu_count()

        if nproc == 1:
            sums = [self._sub_function() for i in range(10)]
        elif 1 < nproc:
            print('multiprocessing engaged with {} cores'.format(nproc))
            with mp.Pool(nproc) as p:
                sums = [p.apply_async(self._sub_function) for i in range(10)]
                sums = [pp.get() for pp in sums]

        self.sums = sums

        return sums

    def _sub_function(self):
        return self.data.sum(0)


if __name__ == "__main__":
    t = TestClass(np.zeros((126,512,512)))
    ans = t.top_level_function()
    print(len(ans))
    ans = t.top_level_function(4)
    print(len(ans))

    t = TestClass(np.zeros((126,2048,2048)))
    ans = t.top_level_function()
    print(len(ans))
    ans = t.top_level_function(4)
    print(len(ans))
Run Code Online (Sandbox Code Playgroud)

其输出:

10
multiprocessing engaged with 4 cores
10
10
multiprocessing engaged with 4 cores
Process SpawnPoolWorker-6:
Traceback (most recent call last):
  File "C:\Anaconda3\lib\multiprocessing\process.py", line 254, in _bootstrap
    self.run()
  File "C:\Anaconda3\lib\multiprocessing\process.py", line 93, in run
    self._target(*self._args, **self._kwargs)
  File "C:\Anaconda3\lib\multiprocessing\pool.py", line 108, in worker
    task = get()
  File "C:\Anaconda3\lib\multiprocessing\queues.py", line 355, in get
    res = self._reader.recv_bytes()
  File "C:\Anaconda3\lib\multiprocessing\connection.py", line 216, in recv_bytes
    buf = self._recv_bytes(maxlength)
  File "C:\Anaconda3\lib\multiprocessing\connection.py", line 318, in _recv_bytes
    return self._get_more_data(ov, maxsize)
  File "C:\Anaconda3\lib\multiprocessing\connection.py", line 337, in _get_more_data
    assert left > 0
AssertionError
Process SpawnPoolWorker-8:
Traceback (most recent call last):
  File "C:\Anaconda3\lib\multiprocessing\process.py", line 254, in _bootstrap
    self.run()
  File "C:\Anaconda3\lib\multiprocessing\process.py", line 93, in run
    self._target(*self._args, **self._kwargs)
  File "C:\Anaconda3\lib\multiprocessing\pool.py", line 108, in worker
    task = get()
  File "C:\Anaconda3\lib\multiprocessing\queues.py", line 355, in get
    res = self._reader.recv_bytes()
  File "C:\Anaconda3\lib\multiprocessing\connection.py", line 216, in recv_bytes
    buf = self._recv_bytes(maxlength)
  File "C:\Anaconda3\lib\multiprocessing\connection.py", line 318, in _recv_bytes
    return self._get_more_data(ov, maxsize)
  File "C:\Anaconda3\lib\multiprocessing\connection.py", line 337, in _get_more_data
    assert left > 0
AssertionError
Traceback (most recent call last):
  File "test.py", line 41, in <module>
    ans = t.top_level_function(4)
  File "test.py", line 21, in top_level_function
    sums = [pp.get() for pp in sums]
  File "test.py", line 21, in <listcomp>
    sums = [pp.get() for pp in sums]
  File "C:\Anaconda3\lib\multiprocessing\pool.py", line 599, in get
    raise self._value
  File "C:\Anaconda3\lib\multiprocessing\pool.py", line 383, in _handle_tasks
    put(task)
  File "C:\Anaconda3\lib\multiprocessing\connection.py", line 206, in send
    self._send_bytes(ForkingPickler.dumps(obj))
  File "C:\Anaconda3\lib\multiprocessing\connection.py", line 280, in _send_bytes
    ov, err = _winapi.WriteFile(self._handle, buf, overlapped=True)
OSError: [WinError 87] The parameter is incorrect
Run Code Online (Sandbox Code Playgroud)

因此第一个示例运行良好,但后面的示例(更大的数据集)崩溃了。

我对这个错误从何而来以及如何修复它感到非常困惑。任何帮助将不胜感激。

mat*_*ata 5

当你这样做时

sums = [p.apply_async(self._sub_function) for i in range(10)]
Run Code Online (Sandbox Code Playgroud)

发生的情况是,它将self._sub_function被 pickle 10 次并发送到工作进程进行处理。要腌制实例方法,必须腌制整个实例(包括属性)。data快速检查显示,np.zeros((126,2048,2048))pickled 时需要 4227858596 字节,而您向 10 个不同的进程发送了 10 倍的字节。

您在 期间收到错误_send_bytes,这意味着到工作进程的传输被中断,我的猜测是因为您达到了内存限制。

您可能应该重新考虑您的设计,如果每个工作人员都可以处理部分问题而不需要访问整个数据,则多处理通常效果最好。